
Shakir Mohamed

@shakir_za shakir@google.com

Building Machines that
Imagine and Reason

Principles and Applications of Deep Generative Models

Deep Learning Summer School
August 2016

Machines that Imagine and Reason 2

Abstract

Building Machines that Imagine and Reason:
Principles and Applications of Deep Generative Models

Deep generative models provide a solution to the problem of unsupervised learning, in which a machine
learning system is required to discover the structure hidden within unlabelled data streams. Because they are
generative, such models can form a rich imagery the world in which they are used: an imagination that can
harnessed to explore variations in data, to reason about the structure and behaviour of the world, and
ultimately, for decision-making. This tutorial looks at how we can build machine learning systems with a
capacity for imagination using deep generative models, the types of probabilistic reasoning that they make
possible, and the ways in which they can be used for decision making and acting.

Deep generative models have widespread applications including those in density estimation, image denoising
and in-painting, data compression, scene understanding, representation learning, 3D scene construction, semi-
supervised classification, and hierarchical control, amongst many others. After exploring these applications,
we'll sketch a landscape of generative models, drawing-out three groups of models: fully-observed models,
transformation models, and latent variable models. Different models require different principles for inference
and we'll explore the different options available. Different combinations of model and inference give rise to
different algorithms, including auto-regressive distribution estimators, variational auto-encoders, and
generative adversarial networks. Although we will emphasise deep generative models, and the latent-variable
class in particular, the intention of the tutorial is to explore the general principles, tools and tricks that can be
used throughout machine learning. These reusable topics include Bayesian deep learning, variational
approximations, memoryless and amortised inference, and stochastic gradient estimation. We'll end by
highlighting the topics that were not discussed, and imagine the future of generative models.

Machines that Imagine and Reason 3

New era of scientific
discovery

Disrupt and create
new markets

Quest to
solve intelligence

Statistical and
mathematical
foundations

What components form the ideal machine learning system?

Motivations for machine learning

Machines that Imagine and Reason 4

Why Generative Models

Part of a suite of complementary learning systems

Move beyond associating
inputs to outputs Understand and imagine

how the world evolves

Recognise objects in the world
and their factors of variation

Establish concepts as
useful for reasoning and

decision making

Detect surprising
events in the world

Imagine and
generate rich plans

for the future

Machines that Imagine and Reason 5

Some Themes
Design of probabilistic models

Bayesian Deep Learning
Memoryless and Amortised Inference

Stochastic Optimisation
Reasoning and Control

Functions are deep networks
Fully-connected, convolutional, recurrentf✓(·)

In some way, will involve the
problem of density estimation.

Machines that Imagine and Reason 6

Landscape of
Generative Models

Birds eye view of the
current state of the art.

Part I

Inference and
Learning

Principles and approximations
that can be used to drive learning

in different types of models.
• Bayesian two-sample tests
• Marginal likelihood estimation

x̂

x̃

Part III

A Model for
Every Occasion

xk

xi

xj

f(x) Explore three classes of generative
models, their inductive biases, and

implications for learning and
algorithm design.

Part II

Tools for
Algorithm Building

Constructing scalable
algorithms

• Stochastic approximation
• Amortised inference
• Stochastic optimisation

Part IV

Data y

Encoder
q(z |y)

z ~ q(z | y)

Decoder
p(y |z)

y ~ p(y | z)

z
The Case of

Variational Auto-
encoders

Explore different types of VAEs
• Discrete and continuous

latent variables.
• Static, sequential, volumetric.
• Differentiable and non-

differentiable fns.

Part V

Summary
Mention of things not

discussed and wrap-up

Part VI

Landscape of
Generative Models

Part I

Diversity of Applications and Progress

Machines that Imagine and Reason 8

Data imputation | In-painting | Denoising

Machines that Imagine and Reason 9

Semi-supervised Classification

Auxiliary Deep Generative Models

(a) (b) (c) (d)
Figure 2. (a) True posterior of the prior p(z). (b) The approximation q�(z|a)q�(a) of the ADGM. (c) Prediction on the half-moon data
set after 10 epochs with only 3 labeled data points (black) for each class. (d) PCA plot on the 1st and 2nd principal component of the
corresponding auxiliary latent space.

4.2. Semi-supervised learning on two half-moons

To exemplify the power of the ADGM for semi-
supervised learning we have generated a 2D synthetic
dataset consisting of two half-moons (top and bot-
tom), where (xtop, ytop) = (cos([0,⇡]), sin([0,⇡])) and
(xbottom, ybottom) = (1� cos([0,⇡]), 1� sin([0,⇡])� 0.5),
with added Gaussian noise. The training set contains 1e4
samples divided into batches of 100 with 3 labeled data
points in each class and the test set contains 1e4 samples.
A good semi-supervised model will be able to learn the data
manifold for each of the half-moons and use this together
with the limited labeled information to build the classifier.

The ADGM converges close to 0% classification error in 10
epochs (cf. Fig. 2c), which is much faster than an equiv-
alent model without the auxiliary variable that converges
in more than 100 epochs. When investigating the auxiliary
variable we see that it finds a discriminating internal repre-
sentation of the data manifold and thereby aids the classifier
(cf. Fig. 2d).

4.3. Generative log-likelihood performance

We evaluate the generative performance of the unsuper-
vised auxiliary model, AVAE, using the MNIST dataset.
The inference and generative models are defined as

q

�

(a, z|x) = q

�

(a1|x)q�(z1|a1, x) (19)
LY

i=2

q

�

(a

i

|a
i�1, x)q�(zi|ai, zi�1) ,

p

✓

(x, a, z) = p

✓

(x|z1)p(zL)p✓(aL|zL) (20)
L�1Y

i=1

p

✓

(z

i

|z
i+1)p✓(ai|z�i

) .

where L denotes the number of stochastic layers.

We report the lower bound from Eq. (2) for 5000 impor-
tance weighted samples and use the same training and pa-
rameter settings as in Sønderby et al. (2016) with warm-

up2, batch normalization and 1 Monte Carlo and IW sample
for training.

 log p(x)

VAE+NF, L=1 (REZENDE AND MOHAMED, 2015) �85.10

IWAE, L=1, IW=1 (BURDA ET AL., 2015) �86.76

IWAE, L=1, IW=50 (BURDA ET AL., 2015) �84.78

IWAE, L=2, IW=1 (BURDA ET AL., 2015) �85.33

IWAE, L=2, IW=50 (BURDA ET AL., 2015) �82.90

VAE+VGP, L=2 (TRAN ET AL., 2015) �81.90

LVAE, L=5, IW=1 (SØNDERBY ET AL., 2016) �82.12

LVAE, L=5, FT, IW=10 (SØNDERBY ET AL., 2016) �81.74

AUXILIARY VAE (AVAE), L=1, IW=1 �84.59

AUXILIARY VAE (AVAE), L=2, IW=1 �82.97

Table 1. Unsupervised test log-likelihood on permutation invari-
ant MNIST for the normalizing flows VAE (VAE+NF), impor-
tance weighted auto-encoder (IWAE), variational Gaussian pro-
cess VAE (VAE+VGP) and Ladder VAE (LVAE) with FT denot-
ing the finetuning procedure from Sønderby et al. (2016), IW the
importance weighted samples during training, and L the number
of stochastic latent layers z1, .., zL.

We evaluate the negative log-likelihood for the 1 and 2 lay-
ered AVAE. We found that warm-up was crucial for activa-
tion of the auxiliary variables. Table 1 shows log-likelihood
scores for the permutation invariant MNIST dataset. The
methods are not directly comparable, except for the Lad-
der VAE (LVAE) (Sønderby et al., 2016), since the train-
ing is performed differently. However, they give a good
indication on the expressive power of the auxiliary vari-
able model. The AVAE is performing better than the VAE
with normalizing flows (Rezende and Mohamed, 2015) and
the importance weighted auto-encoder with 1 IW sample
(Burda et al., 2015). The results are also comparable to the
Ladder VAE with 5 latent layers (Sønderby et al., 2016)
and variational Gaussian process VAE (Tran et al., 2015).
As shown in Burda et al. (2015) and Sønderby et al. (2016)
increasing the IW samples and annealing the learning rate
will likely increase the log-likelihood.

2Temperature on the KL-divergence going from 0 to 1 within
the first 200 epochs of training.

Auxiliary Deep Generative Models

(a) (b) (c) (d)
Figure 2. (a) True posterior of the prior p(z). (b) The approximation q�(z|a)q�(a) of the ADGM. (c) Prediction on the half-moon data
set after 10 epochs with only 3 labeled data points (black) for each class. (d) PCA plot on the 1st and 2nd principal component of the
corresponding auxiliary latent space.

4.2. Semi-supervised learning on two half-moons

To exemplify the power of the ADGM for semi-
supervised learning we have generated a 2D synthetic
dataset consisting of two half-moons (top and bot-
tom), where (xtop, ytop) = (cos([0,⇡]), sin([0,⇡])) and
(xbottom, ybottom) = (1� cos([0,⇡]), 1� sin([0,⇡])� 0.5),
with added Gaussian noise. The training set contains 1e4
samples divided into batches of 100 with 3 labeled data
points in each class and the test set contains 1e4 samples.
A good semi-supervised model will be able to learn the data
manifold for each of the half-moons and use this together
with the limited labeled information to build the classifier.

The ADGM converges close to 0% classification error in 10
epochs (cf. Fig. 2c), which is much faster than an equiv-
alent model without the auxiliary variable that converges
in more than 100 epochs. When investigating the auxiliary
variable we see that it finds a discriminating internal repre-
sentation of the data manifold and thereby aids the classifier
(cf. Fig. 2d).

4.3. Generative log-likelihood performance

We evaluate the generative performance of the unsuper-
vised auxiliary model, AVAE, using the MNIST dataset.
The inference and generative models are defined as

q

�

(a, z|x) = q

�

(a1|x)q�(z1|a1, x) (19)
LY

i=2

q

�

(a

i

|a
i�1, x)q�(zi|ai, zi�1) ,

p

✓

(x, a, z) = p

✓

(x|z1)p(zL)p✓(aL|zL) (20)
L�1Y

i=1

p

✓

(z

i

|z
i+1)p✓(ai|z�i

) .

where L denotes the number of stochastic layers.

We report the lower bound from Eq. (2) for 5000 impor-
tance weighted samples and use the same training and pa-
rameter settings as in Sønderby et al. (2016) with warm-

up2, batch normalization and 1 Monte Carlo and IW sample
for training.

 log p(x)

VAE+NF, L=1 (REZENDE AND MOHAMED, 2015) �85.10

IWAE, L=1, IW=1 (BURDA ET AL., 2015) �86.76

IWAE, L=1, IW=50 (BURDA ET AL., 2015) �84.78

IWAE, L=2, IW=1 (BURDA ET AL., 2015) �85.33

IWAE, L=2, IW=50 (BURDA ET AL., 2015) �82.90

VAE+VGP, L=2 (TRAN ET AL., 2015) �81.90

LVAE, L=5, IW=1 (SØNDERBY ET AL., 2016) �82.12

LVAE, L=5, FT, IW=10 (SØNDERBY ET AL., 2016) �81.74

AUXILIARY VAE (AVAE), L=1, IW=1 �84.59

AUXILIARY VAE (AVAE), L=2, IW=1 �82.97

Table 1. Unsupervised test log-likelihood on permutation invari-
ant MNIST for the normalizing flows VAE (VAE+NF), impor-
tance weighted auto-encoder (IWAE), variational Gaussian pro-
cess VAE (VAE+VGP) and Ladder VAE (LVAE) with FT denot-
ing the finetuning procedure from Sønderby et al. (2016), IW the
importance weighted samples during training, and L the number
of stochastic latent layers z1, .., zL.

We evaluate the negative log-likelihood for the 1 and 2 lay-
ered AVAE. We found that warm-up was crucial for activa-
tion of the auxiliary variables. Table 1 shows log-likelihood
scores for the permutation invariant MNIST dataset. The
methods are not directly comparable, except for the Lad-
der VAE (LVAE) (Sønderby et al., 2016), since the train-
ing is performed differently. However, they give a good
indication on the expressive power of the auxiliary vari-
able model. The AVAE is performing better than the VAE
with normalizing flows (Rezende and Mohamed, 2015) and
the importance weighted auto-encoder with 1 IW sample
(Burda et al., 2015). The results are also comparable to the
Ladder VAE with 5 latent layers (Sønderby et al., 2016)
and variational Gaussian process VAE (Tran et al., 2015).
As shown in Burda et al. (2015) and Sønderby et al. (2016)
increasing the IW samples and annealing the learning rate
will likely increase the log-likelihood.

2Temperature on the KL-divergence going from 0 to 1 within
the first 200 epochs of training.

Published as a conference paper at ICLR 2016

Figure 2: Comparison between k-means (left), RIM (middle) and CatGAN (rightmost three) – with
neural networks – on the “circles” dataset with K = 2. Blue and green denote class assignments to
the two different classes. For CatGAN we visualize class assignments – both on the dataset and on
a larger region of the input domain – and generated samples. Best viewed in color.

Algorithm

PI-MNIST test error (%) with n labeled examples
n = 100 n = 1000 All

MTC (Rifai et al., 2011) 12.03 100 0.81
PEA (Bachman et al., 2014) 10.79 2.33 1.08
PEA+ (Bachman et al., 2014) 5.21 2.67 -
VAE+SVM (Kingma et al., 2014) 11.82 (± 0.25) 4.24 (± 0.07) -
SS-VAE (Kingma et al., 2014) 3.33 (± 0.14) 2.4 (± 0.02) 0.96
Ladder �-model (Rasmus et al., 2015) 4.34 (± 2.31) 1.71 (± 0.07) 0.79 (± 0.05)
Ladder full (Rasmus et al., 2015) 1.13 (± 0.04) 1.00 (± 0.06) -
RIM + NN 16.19 (± 3.45) 10.41 (± 0.89)
GAN + SVM 28.71 (± 7.41) 13.21 (± 1.28)
CatGAN (unsupervised) 9.7
CatGAN (semi-supervised) 1.91 (± 0.1) 1.73 (± 0.18) 0.91

Table 1: Classification error, in percent, for the permutation invariant MNIST problem with a re-
duced number of labels. Results are averaged over 10 different sets of labeled examples.

compare the CatGAN algorithm with standard k-means clustering and RIM with neural networks
as discriminative models, which amounts to removing the generator from the CatGAN model and
adding `2 regularization (see Section B in the appendix for an explanation). We considered three
standard synthetic datasets – with feature dimensionality two, thus x 2 R2 – for which we assumed
the optimal number of clusters K do be known: the “two moons” dataset (which contains two
clusters), the “circles” arrangement (again containing two clusters) and a simple dataset with three
isotropic Gaussian blobs of data.

In Figure 2 we show the results of that experiment for the “circles” dataset (plots for the other two
experiments are relegated to Figures 4-6 in the appendix due to space constraints). In summary,
the simple clustering assignment with three data blobs is solved by all algorithms. For the two
more difficult examples both k-means and RIM fail to “correctly” identify the clusters: (1) k-means
fails due to the euclidean distance measure it employs to evaluate distances between data points
and cluster centers, (2) in RIM the objective function only specifies that the deep network has to
separate the data into two equal classes, without any geometric constraints 4. In the CatGAN model,
on the other hand, the discriminator has to place its decision boundaries such that it can easily detect
a non-optimal adversarial generator which seems to coincide with the correct cluster assignment.
Additionally, the generator quickly learns to generate the datasets in all cases.

4.2 UNSUPERVISED AND SEMI-SUPERVISED LEARNING OF IMAGE FEATURES

We next evaluate the capabilities of the CatGAN model on two image recognition datasets. We
performed experiments using fully connected and convolutional networks on MNIST (LeCun et al.,
1989) and CIFAR-10 (Krizhevsky & Hinton, 2009). We either used the full set of labeled exam-
ples or a reduced set of labeled examples and kept the remaining examples for semi-supervised or
unsupervised learning.

4We tried to rectify this by adding regularization (we tried both `2 regularization and adding Gaussian noise)
but that did not yield any improvement

7

Published as a conference paper at ICLR 2016

Figure 2: Comparison between k-means (left), RIM (middle) and CatGAN (rightmost three) – with
neural networks – on the “circles” dataset with K = 2. Blue and green denote class assignments to
the two different classes. For CatGAN we visualize class assignments – both on the dataset and on
a larger region of the input domain – and generated samples. Best viewed in color.

Algorithm

PI-MNIST test error (%) with n labeled examples
n = 100 n = 1000 All

MTC (Rifai et al., 2011) 12.03 100 0.81
PEA (Bachman et al., 2014) 10.79 2.33 1.08
PEA+ (Bachman et al., 2014) 5.21 2.67 -
VAE+SVM (Kingma et al., 2014) 11.82 (± 0.25) 4.24 (± 0.07) -
SS-VAE (Kingma et al., 2014) 3.33 (± 0.14) 2.4 (± 0.02) 0.96
Ladder �-model (Rasmus et al., 2015) 4.34 (± 2.31) 1.71 (± 0.07) 0.79 (± 0.05)
Ladder full (Rasmus et al., 2015) 1.13 (± 0.04) 1.00 (± 0.06) -
RIM + NN 16.19 (± 3.45) 10.41 (± 0.89)
GAN + SVM 28.71 (± 7.41) 13.21 (± 1.28)
CatGAN (unsupervised) 9.7
CatGAN (semi-supervised) 1.91 (± 0.1) 1.73 (± 0.18) 0.91

Table 1: Classification error, in percent, for the permutation invariant MNIST problem with a re-
duced number of labels. Results are averaged over 10 different sets of labeled examples.

compare the CatGAN algorithm with standard k-means clustering and RIM with neural networks
as discriminative models, which amounts to removing the generator from the CatGAN model and
adding `2 regularization (see Section B in the appendix for an explanation). We considered three
standard synthetic datasets – with feature dimensionality two, thus x 2 R2 – for which we assumed
the optimal number of clusters K do be known: the “two moons” dataset (which contains two
clusters), the “circles” arrangement (again containing two clusters) and a simple dataset with three
isotropic Gaussian blobs of data.

In Figure 2 we show the results of that experiment for the “circles” dataset (plots for the other two
experiments are relegated to Figures 4-6 in the appendix due to space constraints). In summary,
the simple clustering assignment with three data blobs is solved by all algorithms. For the two
more difficult examples both k-means and RIM fail to “correctly” identify the clusters: (1) k-means
fails due to the euclidean distance measure it employs to evaluate distances between data points
and cluster centers, (2) in RIM the objective function only specifies that the deep network has to
separate the data into two equal classes, without any geometric constraints 4. In the CatGAN model,
on the other hand, the discriminator has to place its decision boundaries such that it can easily detect
a non-optimal adversarial generator which seems to coincide with the correct cluster assignment.
Additionally, the generator quickly learns to generate the datasets in all cases.

4.2 UNSUPERVISED AND SEMI-SUPERVISED LEARNING OF IMAGE FEATURES

We next evaluate the capabilities of the CatGAN model on two image recognition datasets. We
performed experiments using fully connected and convolutional networks on MNIST (LeCun et al.,
1989) and CIFAR-10 (Krizhevsky & Hinton, 2009). We either used the full set of labeled exam-
ples or a reduced set of labeled examples and kept the remaining examples for semi-supervised or
unsupervised learning.

4We tried to rectify this by adding regularization (we tried both `2 regularization and adding Gaussian noise)
but that did not yield any improvement

7

Data x

Classifier
p(y |x)

Generative
Model

p(x)

Machines that Imagine and Reason 10

jpeg

jpeg 2000

generative

mean

0.2 bits/pixel

0.1 bits/pixel

0.8 bits/pixel

0.4 bits/pixel

Original Image

jpeg

jpeg 2000

generative

mean

Communication and Compression

Machines that Imagine and Reason 11

3D Scene Generation

Machines that Imagine and Reason

• AIR Results

12

Rapid Scene Understanding
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models

(a
)D

at
a

(b
)A

IR
(c

)S
up

.
(d

)O
pt

.

Figure 10. 3D objects: The task is to infer the identity and pose
of a 3D object. (a) Images from the dataset. (b) Reconstructions
produced by re-rendering the inference made by an AIR network
trained on the data without supervision. (c) Reconstructions pro-
duced by an AIR network trained with ground-truth labels. Note
poor performance on cubes due to their symmetry. (d) Recon-
structions obtained by performing direct gradient descent on the
scene representation to minimize reconstruction error. This ap-
proach is less stable and much more susceptible to local minima.

way of imparting knowledge to the system: we specify the
generative model via a 3D renderer, i.e., we completely
specify how any scene representation is transformed to pro-
duce the pixels in an image. Therefore the task is to learn
to infer the counts, identities and poses of several objects,
given different images containing these objects and an im-
plementation of a 3D renderer from which we can draw
new samples. This formulation of computer vision is of-
ten called ‘vision as inverse graphics’ (see e.g., Grenander
1976; Loper & Black 2014; Jampani et al. 2015).

The primary challenge in this view of computer vision is
that of inference. While it is relatively easy to specify high-
quality generative models in the form of probabilistic ren-
derers, performing posterior inference is either extremely
computationally expensive or prone to getting stuck in lo-
cal minima (e.g., via optimization or Markov chain Monte
Carlo). Therefore it would be highly desirable amortize
this cost over training in the form of an inference network.
In addition, probabilistic renderers (and in particular 3D
renderers) typically are not capable of providing gradients
with respect to their inputs, and 3D scene representations
often involve discrete variables, e.g., mesh identities. We
address these challenges by using finite-differencing to ob-
tain a gradient through the renderer, using the score func-
tion estimator to get gradients with respect to discrete vari-
ables, and using an AIR inference architecture to handle
correlated posteriors and variable-length representations.

We demonstrate the capabilities of this approach by first
considering scene consisting of only one of three objects:
a red cube, a blue sphere, and a textured cylinder (see
Fig. 10a). Since the scenes only consist of single objects,

(a
)D

at
a

(b
)R

ec
on

.

Figure 11. 3D scenes: AIR can learn to recover the counts, identi-
ties and poses of multiple objects in a 3D table-top scene. (a) Im-
ages from the dataset. (b) Inference using AIR produces a scene
description which we visualize using the specified renderer. AIR
does occasionally make mistakes, e.g., image 5.

the task is only to infer the identity (cube, sphere, cylin-
der) and pose (position and rotation) of the object present
in the image. We train a single-step (N = 1) AIR infer-
ence network for this task. The network is only provided
with unlabeled images and is trained to maximize the like-
lihood of those images under the model specified by the
renderer. The quality of the scene representations produced
by the learned inference network can be visually inspected
in Fig. 10b. The network accurately and reliably infers the
identity and pose of the object present in the scene. In con-
trast, an identical network trained to predict the ground-
truth identity and pose values of the training data (in a sim-
ilar style to Kulkarni et al. 2015a) has much more difficulty
in accurately determining the cube’s orientation (Fig. 10c).
The supervised loss forces the network to predict the ex-
act angle of rotation. However this is not identifiable from
the image due to the rotational symmetries of some of the
objects, which leads to conditional probabilities that are
multi-modal and difficult to represent using standard net-
work architectures. We also compare with direct optimiza-
tion of the likelihood from scratch for every test image
(Fig. 10d), and observe that this method is slower, less sta-
ble and more susceptible to local minima. So not only does
amortization reduce the cost of inference, but it also over-
comes the pitfalls of independent gradient optimization.

We finally consider a more complex setup, where we infer
the counts, identities and positions of a variable number of
crockery items in a table-top scene (Fig. 11a and Fig. 12).
This would be of critical importance to a robot, say, which
is in the process of interacting with the objects and the ta-
ble. The goal is to learn to achieve this task with as little su-
pervision as possible, and indeed we observe that with AIR
it is possible to do so with no supervision other than a spec-
ification of the renderer. This setting can be extended to
include additional scene variables, such as the camera po-
sition, as we demonstrate in appendix H (Fig. 19). We show
reconstructions of AIR’s inferences in Fig. 11b and Fig. 12,
which are for the most part robust and accurate. We pro-
vide a quantitative comparison of AIR’s inference robust-

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models

Figure 12. 3D scenes details: Left: Ground-truth object and camera positions with inferred positions overlayed in red (note that inferred
cup is closely aligned with ground-truth, thus not clearly visible). We demonstrate fast inference of all relevant scene elements using the
AIR framework. Middle: AIR achieves significantly lower reconstruction error than a naive supervised implementation, and achieves
much higher count inference accuracy. Right: Heatmap of locations on the table in which objects are detected at each time-step (top).
The learned policy appears to be more dependent on identity (bottom).

ness and accuracy with that of a fully supervised network
in Fig. 12. We consider two scenarios: one where each ob-
ject type only appears exactly once, and one where objects
can repeat in the scene. A naive supervised setup struggles
greatly with object repetitions or when an arbitrary order-
ing of the objects is imposed by the labels, however training
is more straightforward when there are no repetitions. AIR
achieves equivalent error and competitive count accuracy
despite the added difficulty of object repetitions.

4. Related Work
Deep neural networks have had great success in learning to
predict various quantities from images, e.g., object classes
(Krizhevsky et al., 2012), camera positions (Kendall et al.,
2015) and actions (Mnih et al., 2015). These methods work
best when large labeled datasets are available for training.

At the other end of the spectrum, e.g., in ‘vision as inverse
graphics’, only a generative model is specified in advance
and prediction is treated as an inference problem, which
is then solved using MCMC or message passing at test-
time. These models range from highly specified (Milch
et al., 2005; Mansinghka et al., 2013), to partially specified
(Zhu & Mumford, 2006; Roux et al., 2011; Heess et al.,
2011; Eslami & Williams, 2014; Tang et al., 2013; 2014),
to largely unspecified (Hinton, 2002; Salakhutdinov & Hin-
ton, 2009; Eslami et al., 2012). Inference is very challeng-
ing and almost always the bottle-neck in model design.

Hinton et al. (1995); Tu & Zhu (2002); Kulkarni et al.
(2015a); Jampani et al. (2015); Wu et al. (2015) exploit
data-driven predictions to empower the ‘vision as inverse
graphics’ paradigm. For instance, in PICTURE, Kulkarni
et al. (2015a) use a deep network to distill the results of
slow MCMC, speeding up predictions at test-time.

Variational auto-encoders (Rezende et al., 2014; Kingma &
Ba, 2014) and their discrete counterparts (Mnih & Gregor,
2014) made the important contribution of showing how the
gradient computations for learning of amortized inference

and generative models could be interleaved, allowing both
to be learned simultaneously in an end-to-end fashion (see
also Schulman et al. 2015). Works like that of Hinton et al.
(2011); Kulkarni et al. (2015b) aim to learn disentangled
representations in an auto-encoding framework using spe-
cial network structures and / or careful training schemes.

It is also worth noting that attention mechanisms in neural
networks have been studied in discriminative and genera-
tive settings, e.g. by Mnih et al. (2014); Ba et al. (2015);
Jaderberg et al. (2015) and Gregor et al. (2015).

AIR draws upon, extends and links these ideas. Similar to
our work is also Huang & Murphy (2015), however they
assume a fixed number of objects. By its nature AIR is also
related to the following problems: counting (Lempitsky &
Zisserman, 2010; Zhang et al., 2015), trans-dimensionality
(Graves, 2016), sparsity (Bengio et al., 2009) and gradient
estimation through renderers (Loper & Black, 2014). It is
the combination of these elements that unlocks the full ca-
pabilities of the proposed approach.

5. Discussion
We presented several principled models that not only learn
to count, locate, classify and reconstruct the elements of a
scene, but do so in a fraction of a second at test-time. The
main ingredients are (a) building in meaning using appro-
priately structured models, (b) amortized inference that is
attentive, iterative and variable-length, and (c) end-to-end
learning. Learning is most successful when the variance
of the gradients is low and the likelihood is well suited
to the data. It will be of interest to examine the scaling
of variance with the number of objects and more sophis-
ticated likelihoods (e.g., occlusion). It is straightforward
to extend the framework to semi- or fully-supervised set-
tings. Furthermore, the framework admits a plug-and-play
approach where existing state-of-the-art detectors, classi-
fiers and renderers are used as sub-components of an AIR
inference network. We plan to investigate these lines of
research in future work.

Machines that Imagine and Reason 13

One-shot Generalisation

Machines that Imagine and Reason 14

Environment Simulation

Action-dependent simulator Truth from Emulator

Machines that Imagine and Reason 15

(a) (b) (c)

Figure 2: High-resolution screenshots of the Labyrinth environments. (a) Forage and Avoid showing
the apples (positive rewards) and lemons (negative rewards). (b) Double T-maze showing cues at
the turning points. (c) Top view of a Double T-maze configuration. The cues indicate the reward is
located at the top left.

state was discarded. The k-nearest-neighbour lookups used k = 50. The discount rate was set to
� = 0.99. Exploration is achieved by using an ✏-greedy policy with ✏ = 0.005. As a baseline, we
used A3C [22]. Labyrinth levels have deterministic transitions and rewards, but the initial location
and facing direction are randomised, and the environment is much richer, being 3-dimensional. For
this reason, unlike Atari, experiments on Labyrinth encounter very few exact matches in the buffers
of QEC-values; less than 0.1% in all three levels.

Each level is progressively more difficult. The first level, called Forage, requires the agent to collect
apples as quickly as possible by walking through them. Each apple provides a reward of 1. A simple
policy of turning until an apple is seen and then moving towards it suffices here. Figure 1 shows that
the episodic controller found an apple seeking policy very quickly. Eventually A3C caught up, and
final outperforms the episodic controller with a more efficient strategy for picking up apples.

The second level, called Forage and Avoid involves collecting apples, which provide a reward of 1,
while avoiding lemons which incur a reward of �1. The level is depicted in Figure 2(a). This level
requires only a slightly more complicated policy then Forage (same policy plus avoid lemons) yet
A3C took over 40 million steps to the same performance that episodic control attained in fewer than
3 million frames.

The third level, called Double-T-Maze, requires the agent to walk in a maze with four ends (a map
is shown in Figure 2(c)) one of the ends contains an apple, while the other three contain lemons.
At each intersection the agent is presented with a colour cue that indicates the direction in which
the apple is located (see Figure 2(b)): left, if red, or right, if green. If the agent walks through a
lemon it incurs a reward of �1. However, if it walks through the apple, it receives a reward of 1, is
teleported back to the starting position and the location of the apple is resampled. The duration of an
episode is limited to 1 minute in which it can reach the apple multiple times if it solves the task fast
enough. Double-T-Maze is a difficult RL problem: rewards are sparse. In fact, A3C never achieved
an expected reward above zero. Due to the sparse reward nature of the Double T-Maze level, A3C did
not update the policy strongly enough in the few instances in which a reward is encountered through
random diffusion in the state space. In contrast, the episodic controller exhibited behaviour akin to
one-shot learning on these instances, and was able to learn from the very few episodes that contain
any rewards different from zero. This allowed the episodic controller to observe between 20 and 30
million frames to learn a policy with positive expected reward, while the parametric policies never
learnt a policy with expected reward higher than zero. In this case, episodic control thrived in sparse
reward environment as it rapidly latched onto an effective strategy.

4.3 Effect of number of nearest neighbours on final score

Finally, we compared the effect of varying k (the number of nearest neighbours) on both Labyrinth
and Atari tasks using VAE features. In our experiments above, we noticed that on Atari re-visiting
the same state was common, and that random projections typically performed the same or better
than VAE features. One further interesting feature is that the learnt VAEs on Atari games do not
yield a higher score as the number of neighbours increases, except on one game, Q*bert, where
VAEs perform reasonably well (see Figure 3a). On Labyrinth levels, we observed that the VAEs
outperformed random projections and the agent rarely encountered the same state more than once.
Interestingly for this case, Figure 3b shows that increasing the number of nearest neighbours has a

7

Representation Learning for Control

Machines that Imagine and Reason 16

Visual Concept Learning

O
ri

gi
na

l
O

xy
ge

n/
Sw

im
m

er
s

Sc
or

e
Sc

or
e/

Li
ve

s

M
ov

in
g

U
p

M
ov

in
g

Le
ft

Machines that Imagine and Reason 17

Density-based Exploration

No bonus

With bonus

Figure 4: “Known world” of a DQN agent trained for 50 million frames with (bottom) and without
(top) count-based exploration bonuses, in MONTEZUMA’S REVENGE.

7.3 Improving exploration for actor-critic methods.

We next turn our attention to actor-critic methods, specifically the A3C (asynchronous actor-critic)
algorithm of Mnih et al. (2016). One appeal of actor-critic methods is that their explicit separation
of policy and Q-function parameters allows for a richer behaviour space. This very separation, how-
ever, often leads to deficient exploration: to produce any sensible results, the A3C policy parameters
must be regularized with an entropy cost (Mnih et al., 2016). As we now show, our count-based
exploration bonus leads to significantly improved A3C performance.

We first trained A3C on 60 Atari 2600 games, with and without the exploration bonus given by (6).
We refer to our augmented algorithm as A3C+. From a parameter sweep over 5 training games we
found the parameter � = 0.01 to work best. Summarily, we find that A3C fails to learn in 15 games,
in the sense that the agent does not achieve a score 50% better than random. In comparison, there
are only 10 games for which A3C+ fails to improve on the random agent; of these, 8 are games
where DQN fails in the same sense. Details and full results are given in the appendix.

To demonstrate the benefits of augmenting A3C with our exploration bonus, we computed a baseline
score (Bellemare et al., 2013) for A3C+ over time. If rg is the random score on game g, ag the
performance of A3C on g after 200 million frames, and sg,t the performance of A3C+ at time t,
then the corresponding baseline score at time t is

zg,t :=
sg,t �min{rg, ag}

max{rg, ag}�min{rg, ag}
.

Figure 5 shows the median and first and third quartile of these scores across games. Considering the
top quartile, we find that A3C+ reaches A3C’s final performance on at least 15 games within 100
million frames, and in fact reaches much higher performance levels by the end of training.

7.4 Comparing exploration bonuses.

Next we compare the effect of using different exploration bonuses derived from our density model.
We consider the following variants:

• no exploration bonus,

• ˆNn(x)�1/2, as per MBIE-EB (Strehl and Littman, 2008);

• ˆNn(x)�1, as per BEB (Kolter and Ng, 2009); and
• PGn(x), related to compression progress (Schmidhuber, 2008).

The exact form of these bonuses is analogous to (6). We compare these variants after 10, 50, 100,
and 200 million frames of training, using the same experimental setup as in the previous section. To

15

Machines that Imagine and Reason 18

Macro-actions and Planning

ac
tio

ns

time

Machines that Imagine and Reason 19

Auxiliary Deep Generative Models

(a) (b) (c) (d)
Figure 2. (a) True posterior of the prior p(z). (b) The approximation q�(z|a)q�(a) of the ADGM. (c) Prediction on the half-moon data
set after 10 epochs with only 3 labeled data points (black) for each class. (d) PCA plot on the 1st and 2nd principal component of the
corresponding auxiliary latent space.

4.2. Semi-supervised learning on two half-moons

To exemplify the power of the ADGM for semi-
supervised learning we have generated a 2D synthetic
dataset consisting of two half-moons (top and bot-
tom), where (xtop, ytop) = (cos([0,⇡]), sin([0,⇡])) and
(xbottom, ybottom) = (1� cos([0,⇡]), 1� sin([0,⇡])� 0.5),
with added Gaussian noise. The training set contains 1e4
samples divided into batches of 100 with 3 labeled data
points in each class and the test set contains 1e4 samples.
A good semi-supervised model will be able to learn the data
manifold for each of the half-moons and use this together
with the limited labeled information to build the classifier.

The ADGM converges close to 0% classification error in 10
epochs (cf. Fig. 2c), which is much faster than an equiv-
alent model without the auxiliary variable that converges
in more than 100 epochs. When investigating the auxiliary
variable we see that it finds a discriminating internal repre-
sentation of the data manifold and thereby aids the classifier
(cf. Fig. 2d).

4.3. Generative log-likelihood performance

We evaluate the generative performance of the unsuper-
vised auxiliary model, AVAE, using the MNIST dataset.
The inference and generative models are defined as

q

�

(a, z|x) = q

�

(a1|x)q�(z1|a1, x) (19)
LY

i=2

q

�

(a

i

|a
i�1, x)q�(zi|ai, zi�1) ,

p

✓

(x, a, z) = p

✓

(x|z1)p(zL)p✓(aL|zL) (20)
L�1Y

i=1

p

✓

(z

i

|z
i+1)p✓(ai|z�i

) .

where L denotes the number of stochastic layers.

We report the lower bound from Eq. (2) for 5000 impor-
tance weighted samples and use the same training and pa-
rameter settings as in Sønderby et al. (2016) with warm-

up2, batch normalization and 1 Monte Carlo and IW sample
for training.

 log p(x)

VAE+NF, L=1 (REZENDE AND MOHAMED, 2015) �85.10

IWAE, L=1, IW=1 (BURDA ET AL., 2015) �86.76

IWAE, L=1, IW=50 (BURDA ET AL., 2015) �84.78

IWAE, L=2, IW=1 (BURDA ET AL., 2015) �85.33

IWAE, L=2, IW=50 (BURDA ET AL., 2015) �82.90

VAE+VGP, L=2 (TRAN ET AL., 2015) �81.90

LVAE, L=5, IW=1 (SØNDERBY ET AL., 2016) �82.12

LVAE, L=5, FT, IW=10 (SØNDERBY ET AL., 2016) �81.74

AUXILIARY VAE (AVAE), L=1, IW=1 �84.59

AUXILIARY VAE (AVAE), L=2, IW=1 �82.97

Table 1. Unsupervised test log-likelihood on permutation invari-
ant MNIST for the normalizing flows VAE (VAE+NF), impor-
tance weighted auto-encoder (IWAE), variational Gaussian pro-
cess VAE (VAE+VGP) and Ladder VAE (LVAE) with FT denot-
ing the finetuning procedure from Sønderby et al. (2016), IW the
importance weighted samples during training, and L the number
of stochastic latent layers z1, .., zL.

We evaluate the negative log-likelihood for the 1 and 2 lay-
ered AVAE. We found that warm-up was crucial for activa-
tion of the auxiliary variables. Table 1 shows log-likelihood
scores for the permutation invariant MNIST dataset. The
methods are not directly comparable, except for the Lad-
der VAE (LVAE) (Sønderby et al., 2016), since the train-
ing is performed differently. However, they give a good
indication on the expressive power of the auxiliary vari-
able model. The AVAE is performing better than the VAE
with normalizing flows (Rezende and Mohamed, 2015) and
the importance weighted auto-encoder with 1 IW sample
(Burda et al., 2015). The results are also comparable to the
Ladder VAE with 5 latent layers (Sønderby et al., 2016)
and variational Gaussian process VAE (Tran et al., 2015).
As shown in Burda et al. (2015) and Sønderby et al. (2016)
increasing the IW samples and annealing the learning rate
will likely increase the log-likelihood.

2Temperature on the KL-divergence going from 0 to 1 within
the first 200 epochs of training.

Generative
Models

Semi-supervised
Classification

Representation
Learning Scene

Understanding

Missing Data
Imputation

Macro-actions
and Planning

Compression and
Communication

One-shot
Generalisation

3D Scene
Generation

Density-based
Exploration

Visual Concept
Learning

Successful Applications of Generative Models

Environment
Simulation

Machines that Imagine and Reason
20

Progress in Generative Models

83.5 80.5 79.2
Conv-

DRAW
Pixel
RNN

85

137.6

91.3
106

Wake
Sleep

Mixture of
Bernoullis

86.3

RBM

88.3

NADE FC-VAE HVI
-CVAE

Factor
Analysis

N
eg

 lo
g-

lik
eli

ho
od

(n

at
s)

103106

FC-
IWAE

91
Conv-

DRAW

100

RBMFC-VAE

N
eg

 L
og

-li
ke

lih
oo

d
(n

at
s)

Omniglot

MNIST

Machines that Imagine and Reason
21

Progress in Generative Models

ImageNet

Conv-
DRAW

Pixel
RNNDRAWVAE Conv. Generative

Adversarial Network

Under review as a conference paper at ICLR 2016

Figure 11: Generations of a DCGAN that was trained on the Imagenet-1k dataset.

16

Vi
su

al
 Q

ua
lit

y
 of

 In
de

pe
nd

en
t S

am
pl

es

Conceptual Compression

Figure 10. Generated samples from a network trained on 64 ⇥ 64 ImageNet with input scaling � = 0.4. Qualitatively asking the
model to be less precise seems to lead to visually more appealing samples.

Machines that Imagine and Reason 22

Machine Learning Framework

1. Models 2. Learning
Principles

3. Algorithms

Machines that Imagine and Reason 23

Types of Generative Models

Models

Fully-observed
models

xk

xi

xj

f(x) Model observed data directly
without introducing any new

unobserved local variables. z

f(z)

x

Transformation
models

Model data as a transformation
of an unobserved noise source

using a parameterised function.

Latent variable modelsz

x

f(z) Introduce an unobserved
random variable for every observed
data point to explain hidden causes.

Machines that Imagine and Reason 24

Smorgasbord of Learning Principles

Learning
Principles

✦ Exact methods (conjugacy, enumeration)
✦ Numerical integration (Quadrature)
✦ Generalised method of moments
✦ Maximum likelihood (ML)
✦ Maximum a posteriori (MAP)
✦ Laplace approximation
✦ Integrated nested Laplace approximations (INLA)
✦ Expectation Maximisation (EM)
✦ Monte Carlo methods (MCMC, SMC, ABC)
✦ Noise contrastive estimation (NCE)
✦ Cavity Methods (EP)
✦ Variational methods

For a given model, there are
many competing inference methods.

Machines that Imagine and Reason 25

Combining Models and Inference

A given model and learning principle can be implemented in many ways.

zi

xi xj

zj

xk

Restricted Boltzmann Machine
+ maximum likelihood

• Contrastive Divergence
• Persistent Contrastive Divergence
• Parallel Tempering
• Natural gradients

z

x

f(z)

Latent variable model
+ variational inference

• VEM algorithm
• Expectation propagation
• Approximate message passing
• Variational auto-encoders

Convolutional neural network
+ penalised maximum likelihood

• Optimisation methods (SGD, Adagrad)
• Regularisation (L1, L2, batchnorm, dropout)

A Model for
Every Occasion

Part II

xk

xi

xj

f(x)

Explore three classes of generative
models, their inductive biases, and

implications for learning and
algorithm design.

Machines that Imagine and Reason

Design Dimensions

27

Types of Generative Models

Latent variable
models

z

x

f(z)

Fully-observed
modelsxk

xi

xj

f(x)

Transformation
models

z

f(z)

x

Computational complexity
Modelling capacity
Bias, uncertainty, calibration
Interpretability

Data: binary, real-valued, nominal,
strings, images.
Dependency: independent, sequential,
temporal, spatial.
Representation: continuous or discrete
Dimension: parametric or non-parametric

Machines that Imagine and Reason 28

Fully-observed Models

Fully-observed models
xk

xi

xj

f(x) Model observed data directly
without introducing any new

unobserved local variables.

Model Parameters are
global variables.

Stochastic activations
& unobserved

random variables are
local variables.

p(x) =
Y

i

p(xi|f(x<i;✓))

xt xt+1 xt+2 xt+3 …

M
ar

ko
v

M
od

els

x1 ⇠ Cat(x1|⇡)

x2 ⇠ Cat(x2|⇡(x1))
. . .

xi ⇠ Cat(xi|⇡(x<n))

All conditional probabilities
described by deep networks.

Machines that Imagine and Reason 29

Fully-observed Models

+ Can directly encode how observed points are related.
+ Any data type can be used
+ For directed graphical models:

+ Parameter learning simple: Log-likelihood is directly computable, no
approximation needed.

+ Easy to scale-up to large models, many optimisation tools available.
- Order sensitive.

- For undirected models,
- Parameter learning difficult: Need to compute normalising constants.

- Generation can be slow: iterate through elements sequentially, or using a
Markov chain.

White Whale Hartebeest

Pixel CNN

Properties

Machines that Imagine and Reason

xt xt+1 xt+2 xt+3 …

30

Model-space Visualisation
Fully-observed models

Directed

Undirected

ContinuousDiscrete

Normal Means
Continuous

Markov Models
N-AR(p)
RNADE

NADE, EoNADE
Fully-visible sigmoid
belief networks
Pixel CNN/RNN
RNN Language mod.
Context tree switching

Boltzmann Machines
Discrete Markov
Random Fields
Ising, Hopfield
and Potts Models

Gaussian MRFs
Log-linear models

Machines that Imagine and Reason

Under review as a conference paper at ICLR 2016

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 ⇥ 64 pixel image. Notably, no
fully connected or pooling layers are used.

suggested value of 0.9 resulted in training oscillation and instability while reducing it to 0.5 helped
stabilize training.

4.1 LSUN

As visual quality of samples from generative image models has improved, concerns of over-fitting
and memorization of training samples have risen. To demonstrate how our model scales with more
data and higher resolution generation, we train a model on the LSUN bedrooms dataset containing
a little over 3 million training examples. Recent analysis has shown that there is a direct link be-
tween how fast models learn and their generalization performance (Hardt et al., 2015). We show
samples from one epoch of training (Fig.2), mimicking online learning, in addition to samples after
convergence (Fig.3), as an opportunity to demonstrate that our model is not producing high quality
samples via simply overfitting/memorizing training examples. No data augmentation was applied to
the images.

4.1.1 DEDUPLICATION

To further decrease the likelihood of the generator memorizing input examples (Fig.2) we perform a
simple image de-duplication process. We fit a 3072-128-3072 de-noising dropout regularized RELU
autoencoder on 32x32 downsampled center-crops of training examples. The resulting code layer
activations are then binarized via thresholding the ReLU activation which has been shown to be an
effective information preserving technique (Srivastava et al., 2014) and provides a convenient form
of semantic-hashing, allowing for linear time de-duplication . Visual inspection of hash collisions
showed high precision with an estimated false positive rate of less than 1 in 100. Additionally, the
technique detected and removed approximately 275,000 near duplicates, suggesting a high recall.

4.2 FACES

We scraped images containing human faces from random web image queries of peoples names. The
people names were acquired from dbpedia, with a criterion that they were born in the modern era.
This dataset has 3M images from 10K people. We run an OpenCV face detector on these images,
keeping the detections that are sufficiently high resolution, which gives us approximately 350,000
face boxes. We use these face boxes for training. No data augmentation was applied to the images.

4

31

Transformation Models

z

f(z)

x

Transformation models

Transform an unobserved
noise source using a

parameterised function.

G
en

er
at

or

N
et

w
or

ks

μ

R

r✓

x = µ+Rz

z ⇠ p(z)

p(x) = p(z)

����det
@f

@z

����
�1

Change of variables for invertible functions

x = f(z;✓)

z ⇠ N (0, I)

The transformation function is parameterised by a linear or
deep network (fully-connected, convolutional or recurrent).

Machines that Imagine and Reason 32

Transformation Models

+ Easy sampling
+ Easy to compute expectations without knowing final distribution.
+ Can exploit with large-scale classifiers and convolutional networks.
- Difficult to satisfy constraints: Difficult to maintain invertibility, and

challenging optimisation.
- Lack of noise model (likelihood):

- Difficult to extend to generic data types
- Difficult to account for noise in observed data.
- Hard to compute marginalised likelihood for model scoring,

comparison and selection.

Convolutional generative
adversarial network

Under review as a conference paper at ICLR 2016

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate.

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds.

4.3 IMAGENET-1K

We use Imagenet-1k (Deng et al., 2009) as a source of natural images for unsupervised training. We
train on 32⇥ 32 min-resized center crops. No data augmentation was applied to the images.

5

Bedrooms

Properties

Machines that Imagine and Reason

z

f(z)

x
33

Model-space Visualisation
Transformation models

Functions
Discrete time

Diffusions
Continuous time

One-liners and
inverse sampling
Distrib. warping

Normalising flows
GAN generator nets

Non- and volume
preserving transforms

Stochastic
Differential Equations
Hamiltonian and
Langevin SDE
Diffusion Models
Non- and volume
preserving flows

Machines that Imagine and Reason 34

Latent Variable Models

Latent variable modelsz

x

f(z) Introduce an unobserved
local random variables that

represents hidden causes.

D
ee

p
La

te
nt

 G
au

ss
ia

n
M

od
el z3

z2

z3

x

z3 ⇠ N (0, I)

z2|z3 ⇠ N (µ(z3),⌃(z3))

z1|z2 ⇠ N (µ(z2),⌃(z2))

x|z1 ⇠ N (µ(z1),⌃(z1))

Machines that Imagine and Reason 35

Latent Variable Models

Properties
+ Easy sampling.
+ Easy way to include hierarchy and depth.
+ Easy to encode structure believed to generate the data
+ Avoids order dependency assumptions: marginalisation of latent

variables induces dependencies.
+ Latents provide compression and representation the data.
+ Scoring, model comparison and selection possible using the

marginalised likelihood.
- Inversion process to determine latents corresponding to a input is

difficult in general
- Difficult to compute marginalised likelihood requiring

approximations.
- Not easy to specify rich approximations for latent posterior

distribution.

Convolutional
DRAW

Conceptual Compression

Figure 10. Generated samples from a network trained on 64 ⇥ 64 ImageNet with input scaling � = 0.4. Qualitatively asking the
model to be less precise seems to lead to visually more appealing samples.

Machines that Imagine and Reason

z

x

f(z)

36

Model-space Visualisation
Latent variable models

Non-parametric

Parametric

Continuous

Discrete
Deep

Direct/
Linear

Deep Gaussian
processes
Recurrent Gaussian
Process
GP State space model

Indian buffet process
Dirichlet process
mixture

Hidden Markov Model
Discrete LVM
Sparse LVMs

PCA, factor analysis
Independent
components analysis
Gaussian LDS
Latent Gauss Field

Nonlinear factor
analysis
Nonlinear Gaussian
belief network
Deep Latent Gaussian
(VAE, DRAW)

Cascaded Indian
Buffet process
Hierarchical Dirichlet
process

Linear Parametric Discrete

Linear Parametric Continuous

Sigmoid Belief Net
Deep auto-regressive
networks (DARN)

Direct Nonparametric Discrete

Direct Nonparametric Continuous

Deep Parametric Discrete

Deep Parametric Continuous

Deep Nonparametric Discrete

Deep Nonparametic Continuous

Gaussian process LVM

Part III

Inference and
Learning

Principles and approximations
that can be used to drive learning

in different types of models.
• Model evidence
• Two-sample testing

Machines that Imagine and Reason 38

Inferential Problems

Common inference problems are:

Evidence Estimation p(x) =

Z
p(x, z)dz

Moment Computation E[f(z)|x] =
Z

f(z)p(z|x)dz

Prediction p(xt+1) =

Z
p(xt+1|xt)p(xt)dxt

Hypothesis Testing B = log p(x|H1)� log p(x|H2)

Machines that Imagine and Reason 39

Bayesian Model Evidence

We take steps to improve the model evidence
for given data samples.

Integral is intractable in general
and requires approximation.

Model evidence (or marginal likelihood, partition function):
Integrating out any global and local variables enables

model scoring, comparison, selection, moment estimation,
normalisation, posterior computation and prediction.

Basic idea: Transform
the integral into an

expectation over a simple,
known distribution.

z

x

f(z)

Learning principle: Model Evidence
532 11. SAMPLING METHODS

Figure 11.8 Importance sampling addresses the prob-
lem of evaluating the expectation of a func-
tion f(z) with respect to a distribution p(z)
from which it is difficult to draw samples di-
rectly. Instead, samples {z(l)} are drawn
from a simpler distribution q(z), and the
corresponding terms in the summation are
weighted by the ratios p(z(l))/q(z(l)).

p(z) f(z)

z

q(z)

Furthermore, the exponential decrease of acceptance rate with dimensionality is a
generic feature of rejection sampling. Although rejection can be a useful technique
in one or two dimensions it is unsuited to problems of high dimensionality. It can,
however, play a role as a subroutine in more sophisticated algorithms for sampling
in high dimensional spaces.

11.1.4 Importance sampling
One of the principal reasons for wishing to sample from complicated probability

distributions is to be able to evaluate expectations of the form (11.1). The technique
of importance sampling provides a framework for approximating expectations di-
rectly but does not itself provide a mechanism for drawing samples from distribution
p(z).

The finite sum approximation to the expectation, given by (11.2), depends on
being able to draw samples from the distribution p(z). Suppose, however, that it is
impractical to sample directly from p(z) but that we can evaluate p(z) easily for any
given value of z. One simplistic strategy for evaluating expectations would be to
discretize z-space into a uniform grid and to evaluate the integrand as a sum of the
form

E[f] ≃
L∑

l=1

p(z(l))f(z(l)). (11.18)

An obvious problem with this approach is that the number of terms in the summation
grows exponentially with the dimensionality of z. Furthermore, as we have already
noted, the kinds of probability distributions of interest will often have much of their
mass confined to relatively small regions of z space and so uniform sampling will be
very inefficient because in high-dimensional problems, only a very small proportion
of the samples will make a significant contribution to the sum. We would really like
to choose the sample points to fall in regions where p(z) is large, or ideally where
the product p(z)f(z) is large.

As in the case of rejection sampling, importance sampling is based on the use
of a proposal distribution q(z) from which it is easy to draw samples, as illustrated
in Figure 11.8. We can then express the expectation in the form of a finite sum over

p(x) =

Z
p(x, z)dz

Machines that Imagine and Reason 40

Importance Sampling

Conditions
• q(z|x)>0, when f(z)p(z) ≠ 0.
• Easy to sample from q(z).

532 11. SAMPLING METHODS

Figure 11.8 Importance sampling addresses the prob-
lem of evaluating the expectation of a func-
tion f(z) with respect to a distribution p(z)
from which it is difficult to draw samples di-
rectly. Instead, samples {z(l)} are drawn
from a simpler distribution q(z), and the
corresponding terms in the summation are
weighted by the ratios p(z(l))/q(z(l)).

p(z) f(z)

z

q(z)

Furthermore, the exponential decrease of acceptance rate with dimensionality is a
generic feature of rejection sampling. Although rejection can be a useful technique
in one or two dimensions it is unsuited to problems of high dimensionality. It can,
however, play a role as a subroutine in more sophisticated algorithms for sampling
in high dimensional spaces.

11.1.4 Importance sampling
One of the principal reasons for wishing to sample from complicated probability

distributions is to be able to evaluate expectations of the form (11.1). The technique
of importance sampling provides a framework for approximating expectations di-
rectly but does not itself provide a mechanism for drawing samples from distribution
p(z).

The finite sum approximation to the expectation, given by (11.2), depends on
being able to draw samples from the distribution p(z). Suppose, however, that it is
impractical to sample directly from p(z) but that we can evaluate p(z) easily for any
given value of z. One simplistic strategy for evaluating expectations would be to
discretize z-space into a uniform grid and to evaluate the integrand as a sum of the
form

E[f] ≃
L∑

l=1

p(z(l))f(z(l)). (11.18)

An obvious problem with this approach is that the number of terms in the summation
grows exponentially with the dimensionality of z. Furthermore, as we have already
noted, the kinds of probability distributions of interest will often have much of their
mass confined to relatively small regions of z space and so uniform sampling will be
very inefficient because in high-dimensional problems, only a very small proportion
of the samples will make a significant contribution to the sum. We would really like
to choose the sample points to fall in regions where p(z) is large, or ideally where
the product p(z)f(z) is large.

As in the case of rejection sampling, importance sampling is based on the use
of a proposal distribution q(z) from which it is easy to draw samples, as illustrated
in Figure 11.8. We can then express the expectation in the form of a finite sum over

Integral problem

w(s) =
p(z)

q(z)
z(s) ⇠ q(z)

p(x) =

Z
p(x|z)p(z)dz

Proposal p(x) =

Z
p(x|z)p(z)q(z)

q(z)
dz

Importance Weight p(x) =

Z
p(x|z)p(z)

q(z)
q(z)dz

Monte Carlo p(x) =
1

S

X

s

w(s)p(x|z(s))

Notation
Always think of q(z|x)
but often will write q(z)
for simplicity.

Machines that Imagine and Reason 41

Importance Sampling to Variational Inference

Integral problem p(x) =

Z
p(x|z)p(z)dz

Proposal p(x) =

Z
p(x|z)p(z)q(z)

q(z)
dz

Importance Weight p(x) =

Z
p(x|z)p(z)

q(z)
q(z)dz

Jensen’s inequality
log

Z
p(x)g(x)dx �

Z
p(x) log g(x)dx

log p(x) �
Z

q(z) log

✓
p(x|z)p(z)

q(z)

◆
dz

Variational lower bound Eq(z)[log p(x|z)]�KL[q(z)kp(z)]

=

Z
q(z) log p(x|z)�

Z
q(z) log

q(z)

p(z)

Machines that Imagine and Reason

Penalty

42

Variational Free Energy

Interpreting the bound:

ReconstructionApprox. Posterior

• Approximate posterior distribution q(z|x): Best match to true posterior
p(z|x), one of the unknown inferential quantities of interest to us.

• Reconstruction cost: The expected log-likelihood measures how well
samples from q(z|x) are able to explain the data x.

• Penalty: Ensures that the explanation of the data q(z|x) doesn’t deviate
too far from your beliefs p(z). A mechanism for realising Ockham’s razor.

F(x, q) = Eq(z)[log p(x|z)]�KL[q(z)kp(z)]

Machines that Imagine and Reason 43

Other Families of Variational Bounds

Variational Free Energy

F(x, q) = Eq(z)[log p(x|z)]�KL[q(z)kp(z)]

Multi-sample Variational Objective

F(x, q) = Eq(z)

"
log

1

S

X

s

p(z)

q(z)
p(x|z)

#

Renyi Variational Objective

F(x, q) =
1

1� ↵
Eq(z)

2

4

log

1

S

X

s

p(z)

q(z)
p(x|z)

!1�↵
3

5

Other generalised families exist. Optimal solution is the same for all objectives.

Machines that Imagine and Reason 44

Bayesian Two-sample Testing
For some models, we only have access to an

unnormalised probability or partial knowledge of
the distribution.

z

f(z)

x

Interest is not in estimating the marginal probabilities, only in how they are related.

We compare the
estimated distribution to the

true distribution using samples.

x̂

x̃

Learning principle: Two-sample tests

p(x̂)

p(x̃)
= 1 p(x̂) = p(x̃)

Numerical Example 14

True
densities

Kernel logistic regression
with Gaussian kernels

Ratios
p(x(1))

p(x(2))

Basic idea:
Transform density

ratio estimation into
class probability

estimation

Machines that Imagine and Reason 45

Bayesian Two-sample Testing
{x1, . . . ,xN} = {x̂1, . . . , x̂n̂, x̃1, . . . , x̃ñ}Combine data

{y1, . . . , yN} = {+1, . . . ,+1,�1, . . . ,�1}Assign labels

p(x̂) = p(x|y = +1) p(x̃) = p(x|y = �1)Equivalence

Density Ratio
p(x̂)

p(x̃)

Conditional
p(x̂)

p(x̃)
=

p(x|y = 1)

p(x|y = �1)

=
p(y = +1|x)p(x)

p(y = +1)

�
p(y = �1|x)p(x)

p(y = �1)Bayes’ Subst.

Class probability
p(x̂)

p(x̃)
=

p(y = +1|x)
p(y = �1|x)

x̂

x̃

p(x|y) = p(y|x)p(x)
p(y)

Bayes’ Rule

Computing a density ratio is equivalent to class probability estimation.

Numerical Example 14

True
densities

Kernel logistic regression
with Gaussian kernels

Ratios
p(y = �1|x)

p(y = +1|x)

Machines that Imagine and Reason 46

Testing to Adversarial Learning

Bernoulli outcome log p(y|x) = logD✓(ˆx) + log(1�D✓(˜x))

Scoring Function p(y = �1|x) = 1�D✓(x)p(y = +1|x) = D✓(x)

x

gen
x

obs

z

f(z)

x

x

gen = f�(z)

z ⇠ p(z)

Generative Adversarial Networks

Instances of testing and inference:
• Two-sample density ratio estimation
• Importance estimation
• Noise-contrastive estimation
• Adversarial learning

F(x, ✓,�) = E
p(xobs)[logD✓

(x

obs

)] + E
p(z)[log(1�D

✓

(f
�

(z)))]

F(x, ✓) = E
p(xobs)[logD✓

(x

obs

)] + E
p(xgen)[log(1�D

✓

(x

gen

))]Two-sample criterion

min

�
max

✓
F(x, ✓,�)

Alternating optimisation

Part IV

Tools for
Algorithm Building

Tools for constructing
scalable algorithms

• Amortised inference
• Stochastic optimisation

Machines that Imagine and Reason 48

Variational EM

Alternating optimisation for the variational
parameters and then model parameters (VEM).

Repeat:

F(x, q) = Eq(z)[log p(x|z)]�KL[q(z)kp(z)]

E-step Var. params� / r�F(x, q)

M-step Model params✓ / r✓F(x, q)

Initialisation

…

log p(x)

KL[q||p⇤]

F(x, q)

Convergence

…

t = 1

Machines that Imagine and Reason 49

Stochastic Approximation

Repeat:

For i = 1, … N
E-step (compute q)(Inference)

M-step (Parameter Learning)

Optimise using a a stochastic gradient based on a mini-batch of data.
Many names: online EM, stochastic approximation EM, stochastic variational inference.

N is a mini-batch: sampled
with replacement from the full

data set or received online.

F(x, q) = Eq(z)[log p(x|z)]�KL[q(z)kp(z)]

�n / r�Eq�(z)[log p✓(xn|zn)]�r�KL[q(zn)kp(z)]

✓ / 1

N

X

n

Eq�(z)[r✓ log p✓(xn|zn)]

Initialisation

…

log p(x)

KL[q||p⇤]

F(x, q)

Convergence

…

t = 1

Machines that Imagine and Reason 50

Memoryless Inference

Memoryless: Any inference
computations are discarded

after the M-step update

E-step does not reuse any previous computation.

Repeat:

For i = 1, … N
E-step (compute q)(Inference)

M-step (Parameter Learning)

�n / r�Eq�(z)[log p✓(xn|zn)]�r�KL[q(zn)kp(z)]

✓ / 1

N

X

n

Eq�(z)[r✓ log p✓(xn|zn)]

Machines that Imagine and Reason 51

Amortised Inference

Instead of solving for every
observation, amortise using a model.

• Inference network: q is an encoder, an inverse model,
recognition model.

• Parameters of q are now a set of global parameters used
for inference of all data points - test and train.

• Amortise (spread) the cost of inference over all data.
• Joint optimisation of variational and model parameters.

Inference networks provide an efficient mechanism for
posterior inference with memory

Repeat:

M-step

For i = 1, … N
E-step (compute q)

�n / r�Eq�(z)[log p✓(xn|zn)]�r�KL[q(zn)kp(z)]

✓ / 1

N

X

n

Eq�(z)[r✓ log p✓(xn|zn)]

Data x

Inference
Network

q(z |x)

z ~ q(z | x)

Machines that Imagine and Reason 52

Amortised Variational Inference

• Model (Decoder): likelihood p(x|z).

• Inference (Encoder): variational distribution q(z|x)

• Transforms an auto-encoder into a generative model

Stochastic encoder-decoder system to
implement variational inference.

PenaltyReconstructionApprox. Posterior

Specific combination of variational inference in latent
variable models using inference networks

Variational Auto-encoder

But don’t forget what your model is, and what inference you use.

F(x, q) = Eq(z)[log p(x|z)]�KL[q(z)kp(z)]

Data x

Inference
Network

q(z |x)

z ~ q(z | x)

Model
p(x |z)

x ~ p(x | z)

z

Machines that Imagine and Reason 53

Minimum Description Length

Hypothesis codeData code-length

• Must introduce an approximation to the ideal message.
• Encoder: variational distribution q(z|x),
• Decoder: likelihood p(x|z).

Stochastic encoder-decoder systems implement amortised variational inference.

Stochastic encoder

F(x, q) = Eq(z)[log p(x|z)]�KL[q(z)kp(z)]

Data x

Encoder
q(z |x)

z ~ q(z | x)

Decoder
p(x |z)

x ~ p(x | z)

z

Regularity in our data that can be explained with
latent variables, implies that the data is compressible.

Minimum Description Length (MDL):
Inference is a problem of Compression.

we must find the ideal shortest message of our
data x: marginal likelihood.

Machines that Imagine and Reason 54

Amortised Message Passing

z
qi

p(z|D) =
Y

i

fi(z)

⇡
Y

i

qi(z) = q(z)

Factorised assumption

qi = argmin
q2Q

DKL[f
iq\ikqiq\i]

Memoryless inference: solve and update cavity distributions iteratively.

Ex
pe

ct
at

io
n

Pr
op

ag
at

io
n

Amortised inference:

qi = h({qi},D; ✓)

Use a model (trees, deep nets, basis functions).

Machines that Imagine and Reason 55

Amortised Predictive Distributions

p(y⇤|x⇤
, X, Y) =

Z
p(y⇤|x⇤

,W)p(W |X,Y)dW

x

y

W3

n = 1, …, N

h1

h2 W2

W1

W {s} ⇠ p(W |X,Y)

Memoryless prediction: compute by Monte Carlo

q(y⇤|x⇤) =
1

S

SX

s=1

p(y⇤|x⇤
,W

(s))

Ba
ye

si
an

 D
ar

k
K

no
w

le
dg

e

Posterior predictive distributions in Bayesian neural networks

p(y⇤|x⇤
, X, Y) = f(x⇤

, ✓)

Amortised predictions:
distillation using a deep network.

Machines that Imagine and Reason 56

Stochastic Optimisation
Common gradient problem

r�Eq�(z)[f✓(z)] = r
Z

q�(z)f✓(z)dz

1. Pathwise estimator: Differentiate the function f(z)
2. Score-function estimator: Differentiate the density q(z|x)

• Don’t know this
expectation in general.

• Gradient is of the
parameters of the
distribution w.r.t. which
the expectation is taken.

Typical problem areas:
•Generative models and inference
•Reinforcement learning and control
•Operations research and inventory
control

•Monte Carlo simulation
•Finance and asset pricing

Two general approaches:
• Deterministic methods: use additional

bounds to simplify computation - local
variational methods.

• Stochastic methods: Compute the
expectation by Monte Carlo and exploit
properties of the distributions.

Machines that Imagine and Reason 57

Stochastic Gradient Estimators

Pathwise Estimator Score-function estimator

= Ep(✏)[r�f✓(g(✏,�))] = Eq(z)[f✓(z)r� log q�(z))]

Other names:
Stochastic backpropagation
Perturbation analysis
Reparameterisation trick
Affine-independent inference

Other names:
Likelihood ratio method
REINFORCE and policy gradients
Automated inference
Black-box inference

Doubly stochastic estimators

r�Eq�(z)[f✓(z)] = r
Z

q�(z)f✓(z)dz

z ⇠ q�(z)

z = g(✏,�) ✏ ⇠ p(✏)

μ

R

r✓

x = µ+Rz

z ⇠ p(z)

When easy to use transformation is
available and differentiable function f.

When function f non-differentiable and
q(z) is easy to sample from.

Part V

The Case of
Variational Auto-

encoders

Data y

Encoder
q(z |y)

z ~ q(z | y)

Decoder
p(y |z)

y ~ p(y | z)

z

Explore different types of VAEs
• Discrete and continuous latents
• Static, sequential, volumetric.
• Differentiable and non-

differentiable fns.

Machines that Imagine and Reason 59

Variational Auto-encoders in General

F(q) = Eq�(z)[log p✓(x|z)]�KL[q�(z|x)kp(z)]

Variational Auto-encoder (VAE)
Amortised variational inference for latent variable models

Design choices
• Prior on the latent variable

- Continuous, Discrete, Gaussian,
Bernoulli, Mixture

• Likelihood function
- iid (static), sequential, temporal, spatial

• Approximating posterior
- distribution, sequential, spatial

For scalability and ease of implementation
• Stochastic gradient descent (and variants),
• stochastic gradient estimation

Data x

Inference
Network

q(z |x)

z ~ q(z | x)

Model
p(x |z)

x ~ p(x | z)

z

Machines that Imagine and Reason 60

Implementing a Variational Algorithm

Ideally want probabilistic programming
using variational inference.

Variational inference turns integration
into optimisation: Automated Tools:

• Differentiation: Theano, Torch7,
TensorFlow, Stan.

• Message passing: infer.NET

• Stochastic gradient descent and
other preconditioned optimisation.

• Same code can run on both GPUs or
on distributed clusters.

• Probabilistic models are modular,
can easily be combined.

Forward pass

Prior
p(z)

log p(z)

Model
p(x |z)

log p(x|z)

Inference
q(z |x)

H[q(z)]z

Data x

Inference
q(z |x)

Model
p(x |z)

Prior
p(z)

r✓

r�

r�

Backward pass

http://infer.net

Machines that Imagine and Reason 61

Latent Gaussian VAE

p(z) = N (0, I)

Model
p(x |z)

log p(x|z)

Prior
p(z)

log p(z)
Inference

q(z |x)

H[q(z)]z

Data x

q�(z|x) = N (µq
�(x),⌃

q
�(x))

All functions are deep networks.

D
ee

p
La

te
nt

 G
au

ss
ia

n
M

od
el

p✓(x|z) = N (µp
✓(z),⌃

p
✓(z))

p(x|fp
✓ (z))

F(x, q) = Eq(z)[log p(x|z)]�KL[q(z)kp(z)]

Machines that Imagine and Reason 62

Latent Gaussian VAE

4.7. Experiments and Results

−2 −1 0 1 2 3
−2

−1

0

1

2

3
R D p(Y|θ)

0.2 - 0.4

0.01 - 0.2
< 0.01

Fa
ct

or
 2

Factor 1

Latent Factor Embedding

Figure 4.7: Results for 2-factor bFA on the voting data using the piecewise
bound. This figure shows a plot of posterior means of factors. Each point
represents a congressman, with size of the marker proportional to the value of
the marginal likelihood; see legend for details. Republicans (R) are marked
with circles while Democrats (D) are marked with squares.

voting data with the Q20 piecewise bound. Fig. 4.7 shows posterior means
of factors. Each point represents a congressman, with size of the marker
proportional to the value of the marginal likelihood approximation; see the
legend for details on size. Republicans (R) are marked with circles while
Democrats (D) are marked with squares. We see that the factors are nicely
clustered, clearly bringing out the fact that the Republicans and Democrats
have di↵erent voting patterns. Also note that, in each cluster, there are
only few congressmen with large marginal likelihoods (the big markers).
These congressmen, perhaps the most “consistent” Republicans/Democrats,
represent the voting pattern of the whole party, and are most discriminative
in deciding the party type.

Left figure in Fig. 4.8 shows the names of the issues, while the right
figure shows the probability of two issues getting the same vote. To be

86

Latent space and
likelihood bound

gives a visualisation
of importance.

3 dimensional latent variable of MNIST
Latent space
disentangles

the input data.

Oxygen/Swimmers Moving Left

Machines that Imagine and Reason 63

VAE Representations

Representation a R

a1 a2 a3

Representations are useful for strategies such as episodic control.

Machines that Imagine and Reason 64

Latent Gaussian VAE

Require flexible approximations for the types of posteriors we are likely to see.

Machines that Imagine and Reason 65

Latent Binary VAE
D

ee
p

Au
to

-r
eg

re
ss

iv
e

N
et

w
or

ks

Model
p(x |z)

log p(x|z)

Prior
p(z)

log p(z)
Inference

q(z |x)

H[q(z)]z

Data x

p(x|z) =
Y

i

p(xi|x<i, z)

p(x|z) =
Y

i

Bern(xi|fp
✓ (x<i, z))

q�(z) =
Y

i

Bern(zi|fq
�(z<i))

q�(z) =
Y

i

q�(zi|z<i)

p(z) =
Y

i

p(zi|z<i)

p(zi|z<i) = Bern(zi|f(z<i))

Machines that Imagine and Reason 66

Latent Binary VAE
Deep AutoRegressive Networks

Figure 4. Samples from a locally connected DARN paired with the nearest train-
ing example. Some of the generated frames have novel combinations of objects
and scores. Columns from left to right, along with upper bound negative log-
likelihood on the test set: Freeway (19.9), Pong (23.7), Space Invaders (113.0),
River Raid (139.4), Sea Quest (217.9).

Figure 5. Bottom: An input frame from the
game Freeway. Lower Middle: Activations in
the encoder from the first hidden layer. Upper

Middle: Activations in the encoder from the
second hidden layer. Top: Each of 25 rows is
an activation of the fully-connected third hidden
layer with 100 units.

where [r✓F denotes our estimator. A good baseline should
be correlated with f(hi), have low variance, and also be
such that the expected value of r✓ log q(hi)b is zero to
get an unbiased estimate of the gradient. We chose a non-

constant baseline. The baseline will be a first-order Taylor
approximation of f . We can get the first-order derivatives
from backpropagation. The baseline is a Taylor approxi-
mation of f about hi, evaluated at a point h0

i:

b(hi) = f(hi) +
df(hi)

dhi
(h0

i � hi) (21)

To satisfy the unbiasedness requirement, we need to solve
the following equation for h0

i:

0 =

1X

h
i

=0

q(hi)r✓ log q(hi)(f(hi) +
df(hi)

dhi
(h0

i � hi))

(22)

The solution depends on the shape of f . If f is a linear
function, any h0

i can be used. If f is a quadratic function,

the solution is h0
i =

1
2 . If fi is a cubic or higher-order func-

tion, the solution depends on the coefficients of the polyno-
mial. We will use h0

i =
1
2 and our estimator will be biased

for non-quadratic functions.

By substituting the baseline into Eq. 20 we obtain the final
form of our estimator of the gradient:

[r✓F = r✓ log q(hi)
df(hi)

dhi
(hi �

1

2

) (23)

=

r✓q(Hi = 1)

2q(hi)

df(hi)

dhi
(24)

An implementation can estimate the gradient with respect
to q(Hi = 1) by backpropagating with respect to hi and
scaling the gradient by 1

2q(h
i

) , where hi is the sampled bi-
nary value.

References

Andradóttir, Sigrún. A review of simulation optimiza-
tion techniques. In Simulation Conference Proceedings,

1998. Winter, volume 1, pp. 151–158. IEEE, 1998.

Bache, K. and Lichman, M. UCI ma-

Deep AutoRegressive Networks

Figure 4. Samples from a locally connected DARN paired with the nearest train-
ing example. Some of the generated frames have novel combinations of objects
and scores. Columns from left to right, along with upper bound negative log-
likelihood on the test set: Freeway (19.9), Pong (23.7), Space Invaders (113.0),
River Raid (139.4), Sea Quest (217.9).

Figure 5. Bottom: An input frame from the
game Freeway. Lower Middle: Activations in
the encoder from the first hidden layer. Upper

Middle: Activations in the encoder from the
second hidden layer. Top: Each of 25 rows is
an activation of the fully-connected third hidden
layer with 100 units.

where [r✓F denotes our estimator. A good baseline should
be correlated with f(hi), have low variance, and also be
such that the expected value of r✓ log q(hi)b is zero to
get an unbiased estimate of the gradient. We chose a non-

constant baseline. The baseline will be a first-order Taylor
approximation of f . We can get the first-order derivatives
from backpropagation. The baseline is a Taylor approxi-
mation of f about hi, evaluated at a point h0

i:

b(hi) = f(hi) +
df(hi)

dhi
(h0

i � hi) (21)

To satisfy the unbiasedness requirement, we need to solve
the following equation for h0

i:

0 =

1X

h
i

=0

q(hi)r✓ log q(hi)(f(hi) +
df(hi)

dhi
(h0

i � hi))

(22)

The solution depends on the shape of f . If f is a linear
function, any h0

i can be used. If f is a quadratic function,

the solution is h0
i =

1
2 . If fi is a cubic or higher-order func-

tion, the solution depends on the coefficients of the polyno-
mial. We will use h0

i =
1
2 and our estimator will be biased

for non-quadratic functions.

By substituting the baseline into Eq. 20 we obtain the final
form of our estimator of the gradient:

[r✓F = r✓ log q(hi)
df(hi)

dhi
(hi �

1

2

) (23)

=

r✓q(Hi = 1)

2q(hi)

df(hi)

dhi
(24)

An implementation can estimate the gradient with respect
to q(Hi = 1) by backpropagating with respect to hi and
scaling the gradient by 1

2q(h
i

) , where hi is the sampled bi-
nary value.

References

Andradóttir, Sigrún. A review of simulation optimiza-
tion techniques. In Simulation Conference Proceedings,

1998. Winter, volume 1, pp. 151–158. IEEE, 1998.

Bache, K. and Lichman, M. UCI ma-

Deep AutoRegressive Networks

Figure 4. Samples from a locally connected DARN paired with the nearest train-
ing example. Some of the generated frames have novel combinations of objects
and scores. Columns from left to right, along with upper bound negative log-
likelihood on the test set: Freeway (19.9), Pong (23.7), Space Invaders (113.0),
River Raid (139.4), Sea Quest (217.9).

Figure 5. Bottom: An input frame from the
game Freeway. Lower Middle: Activations in
the encoder from the first hidden layer. Upper

Middle: Activations in the encoder from the
second hidden layer. Top: Each of 25 rows is
an activation of the fully-connected third hidden
layer with 100 units.

where [r✓F denotes our estimator. A good baseline should
be correlated with f(hi), have low variance, and also be
such that the expected value of r✓ log q(hi)b is zero to
get an unbiased estimate of the gradient. We chose a non-

constant baseline. The baseline will be a first-order Taylor
approximation of f . We can get the first-order derivatives
from backpropagation. The baseline is a Taylor approxi-
mation of f about hi, evaluated at a point h0

i:

b(hi) = f(hi) +
df(hi)

dhi
(h0

i � hi) (21)

To satisfy the unbiasedness requirement, we need to solve
the following equation for h0

i:

0 =

1X

h
i

=0

q(hi)r✓ log q(hi)(f(hi) +
df(hi)

dhi
(h0

i � hi))

(22)

The solution depends on the shape of f . If f is a linear
function, any h0

i can be used. If f is a quadratic function,

the solution is h0
i =

1
2 . If fi is a cubic or higher-order func-

tion, the solution depends on the coefficients of the polyno-
mial. We will use h0

i =
1
2 and our estimator will be biased

for non-quadratic functions.

By substituting the baseline into Eq. 20 we obtain the final
form of our estimator of the gradient:

[r✓F = r✓ log q(hi)
df(hi)

dhi
(hi �

1

2

) (23)

=

r✓q(Hi = 1)

2q(hi)

df(hi)

dhi
(24)

An implementation can estimate the gradient with respect
to q(Hi = 1) by backpropagating with respect to hi and
scaling the gradient by 1

2q(h
i

) , where hi is the sampled bi-
nary value.

References

Andradóttir, Sigrún. A review of simulation optimiza-
tion techniques. In Simulation Conference Proceedings,

1998. Winter, volume 1, pp. 151–158. IEEE, 1998.

Bache, K. and Lichman, M. UCI ma-

Deep AutoRegressive Networks

Figure 4. Samples from a locally connected DARN paired with the nearest train-
ing example. Some of the generated frames have novel combinations of objects
and scores. Columns from left to right, along with upper bound negative log-
likelihood on the test set: Freeway (19.9), Pong (23.7), Space Invaders (113.0),
River Raid (139.4), Sea Quest (217.9).

Figure 5. Bottom: An input frame from the
game Freeway. Lower Middle: Activations in
the encoder from the first hidden layer. Upper

Middle: Activations in the encoder from the
second hidden layer. Top: Each of 25 rows is
an activation of the fully-connected third hidden
layer with 100 units.

where [r✓F denotes our estimator. A good baseline should
be correlated with f(hi), have low variance, and also be
such that the expected value of r✓ log q(hi)b is zero to
get an unbiased estimate of the gradient. We chose a non-

constant baseline. The baseline will be a first-order Taylor
approximation of f . We can get the first-order derivatives
from backpropagation. The baseline is a Taylor approxi-
mation of f about hi, evaluated at a point h0

i:

b(hi) = f(hi) +
df(hi)

dhi
(h0

i � hi) (21)

To satisfy the unbiasedness requirement, we need to solve
the following equation for h0

i:

0 =

1X

h
i

=0

q(hi)r✓ log q(hi)(f(hi) +
df(hi)

dhi
(h0

i � hi))

(22)

The solution depends on the shape of f . If f is a linear
function, any h0

i can be used. If f is a quadratic function,

the solution is h0
i =

1
2 . If fi is a cubic or higher-order func-

tion, the solution depends on the coefficients of the polyno-
mial. We will use h0

i =
1
2 and our estimator will be biased

for non-quadratic functions.

By substituting the baseline into Eq. 20 we obtain the final
form of our estimator of the gradient:

[r✓F = r✓ log q(hi)
df(hi)

dhi
(hi �

1

2

) (23)

=

r✓q(Hi = 1)

2q(hi)

df(hi)

dhi
(24)

An implementation can estimate the gradient with respect
to q(Hi = 1) by backpropagating with respect to hi and
scaling the gradient by 1

2q(h
i

) , where hi is the sampled bi-
nary value.

References

Andradóttir, Sigrún. A review of simulation optimiza-
tion techniques. In Simulation Conference Proceedings,

1998. Winter, volume 1, pp. 151–158. IEEE, 1998.

Bache, K. and Lichman, M. UCI ma-

Deep AutoRegressive Networks

Figure 4. Samples from a locally connected DARN paired with the nearest train-
ing example. Some of the generated frames have novel combinations of objects
and scores. Columns from left to right, along with upper bound negative log-
likelihood on the test set: Freeway (19.9), Pong (23.7), Space Invaders (113.0),
River Raid (139.4), Sea Quest (217.9).

Figure 5. Bottom: An input frame from the
game Freeway. Lower Middle: Activations in
the encoder from the first hidden layer. Upper

Middle: Activations in the encoder from the
second hidden layer. Top: Each of 25 rows is
an activation of the fully-connected third hidden
layer with 100 units.

where [r✓F denotes our estimator. A good baseline should
be correlated with f(hi), have low variance, and also be
such that the expected value of r✓ log q(hi)b is zero to
get an unbiased estimate of the gradient. We chose a non-

constant baseline. The baseline will be a first-order Taylor
approximation of f . We can get the first-order derivatives
from backpropagation. The baseline is a Taylor approxi-
mation of f about hi, evaluated at a point h0

i:

b(hi) = f(hi) +
df(hi)

dhi
(h0

i � hi) (21)

To satisfy the unbiasedness requirement, we need to solve
the following equation for h0

i:

0 =

1X

h
i

=0

q(hi)r✓ log q(hi)(f(hi) +
df(hi)

dhi
(h0

i � hi))

(22)

The solution depends on the shape of f . If f is a linear
function, any h0

i can be used. If f is a quadratic function,

the solution is h0
i =

1
2 . If fi is a cubic or higher-order func-

tion, the solution depends on the coefficients of the polyno-
mial. We will use h0

i =
1
2 and our estimator will be biased

for non-quadratic functions.

By substituting the baseline into Eq. 20 we obtain the final
form of our estimator of the gradient:

[r✓F = r✓ log q(hi)
df(hi)

dhi
(hi �

1

2

) (23)

=

r✓q(Hi = 1)

2q(hi)

df(hi)

dhi
(24)

An implementation can estimate the gradient with respect
to q(Hi = 1) by backpropagating with respect to hi and
scaling the gradient by 1

2q(h
i

) , where hi is the sampled bi-
nary value.

References

Andradóttir, Sigrún. A review of simulation optimiza-
tion techniques. In Simulation Conference Proceedings,

1998. Winter, volume 1, pp. 151–158. IEEE, 1998.

Bache, K. and Lichman, M. UCI ma-

Samples from binarised Atari frames

Machines that Imagine and Reason 67

Semi-supervised VAE
Analogy-making

Analogies
Analogy-making

Analogies
Visual AnalogiesClass Prior

p(y)

log p(y)

Prior
p(z)

log p(z)

Model
p(x |z,y)

log p(x|z, y)

Class
Inference

q(z |x)

Latent
Inference
q(y |x, z)

Data x

 67

2.123.3

VAT

0.96
Aux.

SS-VAE

1.06

Ladder
NetSS-VAE

%
 C

la
ss

ifi
ca

tio
n

Er
ro

r

(1
00

 la
be

ls)

0.92

SS-GAN

Machines that Imagine and Reason 68

Sequential Latent Gaussian VAE
D

R
AW

Model
p(x |z)

log p(x|z)

Prior
p(z)

log p(z)
Inference

q(z |x)

H[q(z)]z

Data x

p(z) =
Y

i

p(zi|z<i)

q�(z) =
Y

i

q�(zi|z<i)

p(x|fp
✓ (z))

p✓(x|z) = N (µp
✓(z),⌃

p
✓(z))

Machines that Imagine and Reason 69

Sequential Latent Gaussian VAE

Prior
p(z1)

State
h(z)

Prior
p(z2)

State
h(z)

Model
p(x |z)

log p(x|z)

Inference
q(z1⎜x)

Data x

State
s(x)

Data x

State
s(x)

Inference
q(z2⎜x)

• LSTM or GRU networks for state modules
• Spatial attention in both the recognition and

generation phase using spatial transformers.
• Can remove inference model RNN and share

the generate model state.
• Can include additional canvas

D
R

AW

Prior
p(zT)

State
h(z)

… State
s(x)

Data x

Inference
q(zT⎜x)

…

Machines that Imagine and Reason 70

Sequential Latent Gaussian VAE
D

R
AW

Machines that Imagine and Reason 71

Sequential Latent Gaussian VAE

Machines that Imagine and Reason 72

Structured Sequential VAEs
AI

R
- A

tte
nd

-I
nf

er
-R

ep
ea

t

State
s(x)

Data x

Inference
q(zwhat

T) q(zwhere
T) q(zcont

T

)

Data x

State
s(x)

Inference
q(zwhat

1) q(zwhere
1) q(zcont1)

…

Model
p(x |z)

log p(x|z)

…

p(x|fp
✓ (z1, . . . , zT))

q(z1:T |x) =
Y

i

q(z
i

|fq

�

(z
<i

,x))q(zcont
i

)

Prior
p(zwhere

1)p(zwhat
1) p(zcont1)

Prior
p(zwhere

T)p(zwhat
T) p(zcont

T

)

p(z
i

) = p(zwhat

i

)p(zwhere

i

)p(zcont
i

)

Machines that Imagine and Reason 73

Structured Sequential VAEs
AI

R
- A

tte
nd

-I
nf

er
-R

ep
ea

t

Machines that Imagine and Reason 74

Volumetric VAEs
Vo

lu
m

et
ric

 D
RA

W

Prior
p(z1)

Prior
p(z2)

Prior
p(zT)

State
h(z)

State
h(z)

State
h(z)

Model
p(x |z)

log p(x|z)

• Extend to use volumetric
convolutions and canvas.

• 3D read/write attention using 3D
spatial transformers.

• Volume can represent colour
channels, volumes, time.

• Can use non-differentiable model
such as a renderer.

Inference
q(z1⎜x)

State
s(x)

State
s(x)

Inference
q(z2⎜x)

State
s(x)

Inference
q(zT⎜x)

Model can be non-
differentiable, like a

graphics engine.

Machines that Imagine and Reason 75

Volumetric VAEs
Vo

lu
m

et
ric

 D
RA

W

Machines that Imagine and Reason 76

Macro-action Learning
ST

RA
W

Prior
p(z|x)

log p(z|x)

Action Prior
p(a1..T|z)

log p(a1..T|z)

Environment
or Model
p(R |a, x)

log p(R|a, x)

Action
Inference
q(a1..T|z)

z -Inference
q(z |x)

Data x

F⇡(✓) = E
q(a,z|x)[R(a|x)]� ↵KL[q

✓

(z|x)kp(z|x)] + ↵H[⇡
✓

(a|z)]
Instance of a variational MDP

p(z) = N (z|0, I)
p(a1...T |z) = Un(a)

p(R|a1...T) / e⌫R(a,x)

q(a|z) = Cat(a|⇡✓(z))

q(z|x) = N (z|µ�(x),⌃�(x))

Machines that Imagine and Reason 77

Macro-action Learning

ac
tio

ns

time

Part VI

Summary

Machines that Imagine and Reason 79

Auxiliary Deep Generative Models

(a) (b) (c) (d)
Figure 2. (a) True posterior of the prior p(z). (b) The approximation q�(z|a)q�(a) of the ADGM. (c) Prediction on the half-moon data
set after 10 epochs with only 3 labeled data points (black) for each class. (d) PCA plot on the 1st and 2nd principal component of the
corresponding auxiliary latent space.

4.2. Semi-supervised learning on two half-moons

To exemplify the power of the ADGM for semi-
supervised learning we have generated a 2D synthetic
dataset consisting of two half-moons (top and bot-
tom), where (xtop, ytop) = (cos([0,⇡]), sin([0,⇡])) and
(xbottom, ybottom) = (1� cos([0,⇡]), 1� sin([0,⇡])� 0.5),
with added Gaussian noise. The training set contains 1e4
samples divided into batches of 100 with 3 labeled data
points in each class and the test set contains 1e4 samples.
A good semi-supervised model will be able to learn the data
manifold for each of the half-moons and use this together
with the limited labeled information to build the classifier.

The ADGM converges close to 0% classification error in 10
epochs (cf. Fig. 2c), which is much faster than an equiv-
alent model without the auxiliary variable that converges
in more than 100 epochs. When investigating the auxiliary
variable we see that it finds a discriminating internal repre-
sentation of the data manifold and thereby aids the classifier
(cf. Fig. 2d).

4.3. Generative log-likelihood performance

We evaluate the generative performance of the unsuper-
vised auxiliary model, AVAE, using the MNIST dataset.
The inference and generative models are defined as

q

�

(a, z|x) = q

�

(a1|x)q�(z1|a1, x) (19)
LY

i=2

q

�

(a

i

|a
i�1, x)q�(zi|ai, zi�1) ,

p

✓

(x, a, z) = p

✓

(x|z1)p(zL)p✓(aL|zL) (20)
L�1Y

i=1

p

✓

(z

i

|z
i+1)p✓(ai|z�i

) .

where L denotes the number of stochastic layers.

We report the lower bound from Eq. (2) for 5000 impor-
tance weighted samples and use the same training and pa-
rameter settings as in Sønderby et al. (2016) with warm-

up2, batch normalization and 1 Monte Carlo and IW sample
for training.

 log p(x)

VAE+NF, L=1 (REZENDE AND MOHAMED, 2015) �85.10

IWAE, L=1, IW=1 (BURDA ET AL., 2015) �86.76

IWAE, L=1, IW=50 (BURDA ET AL., 2015) �84.78

IWAE, L=2, IW=1 (BURDA ET AL., 2015) �85.33

IWAE, L=2, IW=50 (BURDA ET AL., 2015) �82.90

VAE+VGP, L=2 (TRAN ET AL., 2015) �81.90

LVAE, L=5, IW=1 (SØNDERBY ET AL., 2016) �82.12

LVAE, L=5, FT, IW=10 (SØNDERBY ET AL., 2016) �81.74

AUXILIARY VAE (AVAE), L=1, IW=1 �84.59

AUXILIARY VAE (AVAE), L=2, IW=1 �82.97

Table 1. Unsupervised test log-likelihood on permutation invari-
ant MNIST for the normalizing flows VAE (VAE+NF), impor-
tance weighted auto-encoder (IWAE), variational Gaussian pro-
cess VAE (VAE+VGP) and Ladder VAE (LVAE) with FT denot-
ing the finetuning procedure from Sønderby et al. (2016), IW the
importance weighted samples during training, and L the number
of stochastic latent layers z1, .., zL.

We evaluate the negative log-likelihood for the 1 and 2 lay-
ered AVAE. We found that warm-up was crucial for activa-
tion of the auxiliary variables. Table 1 shows log-likelihood
scores for the permutation invariant MNIST dataset. The
methods are not directly comparable, except for the Lad-
der VAE (LVAE) (Sønderby et al., 2016), since the train-
ing is performed differently. However, they give a good
indication on the expressive power of the auxiliary vari-
able model. The AVAE is performing better than the VAE
with normalizing flows (Rezende and Mohamed, 2015) and
the importance weighted auto-encoder with 1 IW sample
(Burda et al., 2015). The results are also comparable to the
Ladder VAE with 5 latent layers (Sønderby et al., 2016)
and variational Gaussian process VAE (Tran et al., 2015).
As shown in Burda et al. (2015) and Sønderby et al. (2016)
increasing the IW samples and annealing the learning rate
will likely increase the log-likelihood.

2Temperature on the KL-divergence going from 0 to 1 within
the first 200 epochs of training.

Generative
Models

Semi-supervised
Classification

Representation
Learning Scene

Understanding

Missing Data
Imputation

Macro-actions
and Planning

Compression and
Communication

One-shot
Generalisation

3D Scene
Generation

Density-based
Exploration

Visual Concept
Learning

Demonstrated Applications of Generative Models

Environment
Simulation

Machines that Imagine and Reason 80

Summary

83.5 80.5 79.2
Conv-

DRAW
Pixel
RNN

85

137.6

91.3
106

Wake
Sleep

Mixture of
Bernoullis

86.3

RBM

88.3

NADE FC-VAE HVI
-CVAE

Factor
Analysis

N
eg

 L
og

-li
ke

lih
oo

d
(n

at
s)

Fully-observed
models

xk

xi

xj

f(x)

Transformation
models

z

f(z)

x
Latent variable

models

z

x

f(z)

Under review as a conference paper at ICLR 2016

Figure 11: Generations of a DCGAN that was trained on the Imagenet-1k dataset.

16

Machines that Imagine and Reason 81

Summary

Learning principle: Model Evidence
532 11. SAMPLING METHODS

Figure 11.8 Importance sampling addresses the prob-
lem of evaluating the expectation of a func-
tion f(z) with respect to a distribution p(z)
from which it is difficult to draw samples di-
rectly. Instead, samples {z(l)} are drawn
from a simpler distribution q(z), and the
corresponding terms in the summation are
weighted by the ratios p(z(l))/q(z(l)).

p(z) f(z)

z

q(z)

Furthermore, the exponential decrease of acceptance rate with dimensionality is a
generic feature of rejection sampling. Although rejection can be a useful technique
in one or two dimensions it is unsuited to problems of high dimensionality. It can,
however, play a role as a subroutine in more sophisticated algorithms for sampling
in high dimensional spaces.

11.1.4 Importance sampling
One of the principal reasons for wishing to sample from complicated probability

distributions is to be able to evaluate expectations of the form (11.1). The technique
of importance sampling provides a framework for approximating expectations di-
rectly but does not itself provide a mechanism for drawing samples from distribution
p(z).

The finite sum approximation to the expectation, given by (11.2), depends on
being able to draw samples from the distribution p(z). Suppose, however, that it is
impractical to sample directly from p(z) but that we can evaluate p(z) easily for any
given value of z. One simplistic strategy for evaluating expectations would be to
discretize z-space into a uniform grid and to evaluate the integrand as a sum of the
form

E[f] ≃
L∑

l=1

p(z(l))f(z(l)). (11.18)

An obvious problem with this approach is that the number of terms in the summation
grows exponentially with the dimensionality of z. Furthermore, as we have already
noted, the kinds of probability distributions of interest will often have much of their
mass confined to relatively small regions of z space and so uniform sampling will be
very inefficient because in high-dimensional problems, only a very small proportion
of the samples will make a significant contribution to the sum. We would really like
to choose the sample points to fall in regions where p(z) is large, or ideally where
the product p(z)f(z) is large.

As in the case of rejection sampling, importance sampling is based on the use
of a proposal distribution q(z) from which it is easy to draw samples, as illustrated
in Figure 11.8. We can then express the expectation in the form of a finite sum over

p(x) =

Z
p(x, z)dz

Learning principle: Two-sample Tests
x̂

x̃ p(x̂)

p(x̃)
= 1 p(x̂) = p(x̃)

Machines that Imagine and Reason 82

Summary

Prior
p(z1)

Prior
p(z2)

Prior
p(zT)

State
h(z)

State
h(z)

State
h(z)

Model
p(x |z)

log p(x|z)

Inference
q(z1⎜x)

State
s(x)

State
s(x)

Inference
q(z2⎜x)

State
s(x)

Inference
q(zT⎜x)

Families of VAEs

Amortised Inference

Inference
Network

q(z |x)

z ~ q(z | x)

r�Eq�(z)[f✓(z)] = r
Z

q�(z)f✓(z)dz

Score-function estimator
When function f non-differentiable and

q(z) is easy to sample from.

Stochastic optimisation

Pathwise Estimator
When easy to use transformation is

available and differentiable function f.

Machines that Imagine and Reason 83

The Future of Generative Models

In the aid of supervised and
reward-based systems

Calibration, confidence intervals,
robustness and interpretability.

Data-efficient
learning systems

Make more efficient
use of scarce data

Semi-parametric
Combining parametric and non-
parametric models for scalable,

accurate, adaptive models

Scientific discovery
Exploratory analysis.

Synthesis and simulation: cosmic
phenomena, climate systems.

Complementary systems
and integrated agents

Richer scene understanding
Self-directed and curious agents

Conceptual reasoning
Integrated planning and

control systems

Shakir Mohamed

Building Machines that
Imagine and Reason

Principles and Applications of Deep Generative Models

joinus@deepmind.com

Thanks to many people:
Danilo Rezende, Theophane Weber, Andriy Mnih, Ali

Eslami, Karol Gregor, Sasha Veznevehts, Silvia Chiappa, Irina
Higgins, Marc Bellemare, Charles Blundell, Benigno Uria,

David Pfau, Lars Buesing, David Barret, Daan Wierstra,
and many others at DeepMind.

@shakir_za shakir@google.com Deep Learning Summer School
August 2016

Machines that Imagine and Reason

Applications of Deep Generative Models

Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra. "Stochastic backpropagation and approximate inference in deep generative
models.” ICML 2014

Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes.” ICLR 2014

Gregor, Karol, et al. "Towards Conceptual Compression." arXiv preprint arXiv:1604.08772 (2016).

Eslami, S. M., Heess, N., Weber, T., Tassa, Y., Kavukcuoglu, K., & Hinton, G. E. (2016). Attend, Infer, Repeat: Fast Scene Understanding with
Generative Models. arXiv preprint arXiv:1603.08575.

Oh, Junhyuk, Xiaoxiao Guo, Honglak Lee, Richard L. Lewis, and Satinder Singh. "Action-conditional video prediction using deep networks in atari
games." In Advances in Neural Information Processing Systems, pp. 2863-2871. 2015.

Rezende, Danilo Jimenez, Shakir Mohamed, Ivo Danihelka, Karol Gregor, and Daan Wierstra. "One-Shot Generalization in Deep Generative
Models." arXiv preprint arXiv:1603.05106 (2016).

Rezende, Danilo Jimenez, S. M. Eslami, Shakir Mohamed, Peter Battaglia, Max Jaderberg, and Nicolas Heess. "Unsupervised Learning of 3D
Structure from Images." arXiv preprint arXiv:1607.00662 (2016).

Kingma, Diederik P., Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. "Semi-supervised learning with deep generative models." In
Advances in Neural Information Processing Systems, pp. 3581-3589. 2014.

Maaløe, Lars, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther. "Auxiliary Deep Generative Models." arXiv preprint arXiv:1602.05473
(2016).

Odena, Augustus. "Semi-Supervised Learning with Generative Adversarial Networks." arXiv preprint arXiv:1606.01583 (2016).

Springenberg, Jost Tobias. "Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks." arXiv preprint arXiv:
1511.06390 (2015).

Blundell, Charles, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z. Leibo, Jack Rae, Daan Wierstra, and Demis Hassabis.
"Model-Free Episodic Control." arXiv preprint arXiv:1606.04460 (2016).

Higgins, Irina, Loic Matthey, Xavier Glorot, Arka Pal, Benigno Uria, Charles Blundell, Shakir Mohamed, and Alexander Lerchner. "Early Visual
Concept Learning with Unsupervised Deep Learning." arXiv preprint arXiv:1606.05579 (2016).

Bellemare, Marc G., Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos. "Unifying Count-Based Exploration and
Intrinsic Motivation." arXiv preprint arXiv:1606.01868 (2016).

85

Some References

Machines that Imagine and Reason

Alexander (Sasha) Vezhnevets, Mnih, Volodymyr, John Agapiou, Simon Osindero, Alex Graves, Oriol Vinyals, and Koray Kavukcuoglu. "Strategic
Attentive Writer for Learning Macro-Actions." arXiv preprint arXiv:1606.04695 (2016).

Gregor, Karol, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra. "DRAW: A recurrent neural network for image
generation." arXiv preprint arXiv:1502.04623 (2015).

Fully-observed Models

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks." arXiv preprint arXiv:1601.06759 (2016).

Larochelle, Hugo, and Iain Murray. "The Neural Autoregressive Distribution Estimator." In AISTATS, vol. 1, p. 2. 2011.

Uria, Benigno, Iain Murray, and Hugo Larochelle. "A Deep and Tractable Density Estimator." In ICML, pp. 467-475. 2014.

Veness, Joel, Kee Siong Ng, Marcus Hutter, and Michael Bowling. "Context tree switching." In 2012 Data Compression Conference, pp. 327-336.
IEEE, 2012.

Rue, Havard, and Leonhard Held. Gaussian Markov random fields: theory and applications. CRC Press, 2005.

Wainwright, Martin J., and Michael I. Jordan. "Graphical models, exponential families, and variational inference." Foundations and Trends® in
Machine Learning 1, no. 1-2 (2008): 1-305.

Transformation Models

Tabak, E. G., and Cristina V. Turner. "A family of nonparametric density estimation algorithms." Communications on Pure and Applied
Mathematics 66, no. 2 (2013): 145-164.

Rezende, Danilo Jimenez, and Shakir Mohamed. "Variational inference with normalizing flows." arXiv preprint arXiv:1505.05770 (2015).

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. "Generative
adversarial nets." In Advances in Neural Information Processing Systems, pp. 2672-2680. 2014.

Verrelst, Herman, Johan Suykens, Joos Vandewalle, and Bart De Moor. "Bayesian learning and the Fokker-Planck machine." In Proceedings of the
International Workshop on Advanced Black-box Techniques for Nonlinear Modeling, Leuven, Belgium, pp. 55-61. 1998.

Devroye, Luc. "Random variate generation in one line of code." In Proceedings of the 28th conference on Winter simulation, pp. 265-272. IEEE
Computer Society, 1996.

86

Some References

Machines that Imagine and Reason

Latent variable models

Dayan, Peter, Geoffrey E. Hinton, Radford M. Neal, and Richard S. Zemel. "The helmholtz machine." Neural computation 7, no. 5 (1995): 889-904.

Hyvärinen, A., Karhunen, J., & Oja, E. (2004). Independent component analysis (Vol. 46). John Wiley & Sons.

Gregor, Karol, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wierstra. "Deep autoregressive networks." arXiv preprint arXiv:1310.8499
(2013).

Ghahramani, Zoubin, and Thomas L. Griffiths. "Infinite latent feature models and the Indian buffet process." In Advances in neural information
processing systems, pp. 475-482. 2005.

Teh, Yee Whye, Michael I. Jordan, Matthew J. Beal, and David M. Blei. "Hierarchical dirichlet processes." Journal of the american statistical
association (2012).

Adams, Ryan Prescott, Hanna M. Wallach, and Zoubin Ghahramani. "Learning the Structure of Deep Sparse Graphical Models." In AISTATS, pp.
1-8. 2010.

Lawrence, Neil D. "Gaussian process latent variable models for visualisation of high dimensional data." Advances in neural information processing
systems 16.3 (2004): 329-336.

Damianou, Andreas C., and Neil D. Lawrence. "Deep Gaussian Processes." In AISTATS, pp. 207-215. 2013.

Mattos, César Lincoln C., Zhenwen Dai, Andreas Damianou, Jeremy Forth, Guilherme A. Barreto, and Neil D. Lawrence. "Recurrent Gaussian
Processes." arXiv preprint arXiv:1511.06644 (2015).

Salakhutdinov, Ruslan, Andriy Mnih, and Geoffrey Hinton. "Restricted Boltzmann machines for collaborative filtering." In Proceedings of the 24th
international conference on Machine learning, pp. 791-798. ACM, 2007.

Saul, Lawrence K., Tommi Jaakkola, and Michael I. Jordan. "Mean field theory for sigmoid belief networks." Journal of artificial intelligence
research 4, no. 1 (1996): 61-76.

Frey, Brendan J., and Geoffrey E. Hinton. "Variational learning in nonlinear Gaussian belief networks." Neural Computation 11, no. 1 (1999): 193-213.

87

Some References

Machines that Imagine and Reason

Inference and Learning

Jordan, Michael I., Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. "An introduction to variational methods for graphical models."
Machine learning 37, no. 2 (1999): 183-233.

Hoffman, Matthew D., David M. Blei, Chong Wang, and John William Paisley. "Stochastic variational inference." Journal of Machine Learning
Research 14, no. 1 (2013): 1303-1347. 
Honkela, Antti, and Harri Valpola. "Variational learning and bits-back coding: an information-theoretic view to Bayesian learning." IEEE
Transactions on Neural Networks 15, no. 4 (2004): 800-810.

Burda, Yuri, Roger Grosse, and Ruslan Salakhutdinov. "Importance weighted autoencoders." arXiv preprint arXiv:1509.00519 (2015).

Li, Yingzhen, and Richard E. Turner. "Variational Inference with R\'enyi Divergence." arXiv preprint arXiv:1602.02311 (2016).

Borgwardt, Karsten M., and Zoubin Ghahramani. "Bayesian two-sample tests." arXiv preprint arXiv:0906.4032 (2009).

Gutmann, Michael, and Aapo Hyvärinen. "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models."
AISTATS. Vol. 1. No. 2. 2010.

Tsuboi, Yuta, Hisashi Kashima, Shohei Hido, Steffen Bickel, and Masashi Sugiyama. "Direct Density Ratio Estimation for Large-scale Covariate
Shift Adaptation." Information and Media Technologies 4, no. 2 (2009): 529-546.

Sugiyama, Masashi, Taiji Suzuki, and Takafumi Kanamori. Density ratio estimation in machine learning. Cambridge University Press, 2012.

Amortised Inference

Gershman, Samuel J., and Noah D. Goodman. "Amortized inference in probabilistic reasoning." In Proceedings of the 36th Annual Conference of
the Cognitive Science Society. 2014.

Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra. "Stochastic backpropagation and approximate inference in deep generative
models." arXiv preprint arXiv:1401.4082 (2014).

Heess, Nicolas, Daniel Tarlow, and John Winn. "Learning to pass expectation propagation messages." In Advances in Neural Information
Processing Systems, pp. 3219-3227. 2013.

Jitkrittum, Wittawat, Arthur Gretton, Nicolas Heess, S. M. Eslami, Balaji Lakshminarayanan, Dino Sejdinovic, and Zoltán Szabó. "Kernel-based
just-in-time learning for passing expectation propagation messages." arXiv preprint arXiv:1503.02551 (2015).

Korattikara, Anoop, Vivek Rathod, Kevin Murphy, and Max Welling. "Bayesian dark knowledge." arXiv preprint arXiv:1506.04416 (2015).

88

Some References

Machines that Imagine and Reason

Stochastic Optimisation

P L’Ecuyer, Note: On the interchange of derivative and expectation for likelihood ratio derivative estimators, Management Science, 1995

Peter W Glynn, Likelihood ratio gradient estimation for stochastic systems, Communications of the ACM, 1990

Michael C Fu, Gradient estimation, Handbooks in operations research and management science, 2006

Ronald J Williams, Simple statistical gradient-following algorithms for connectionist reinforcement learning, Machine learning, 1992

Paul Glasserman, Monte Carlo methods in financial engineering, , 2003

Luc Devroye, Random variate generation in one line of code, Proceedings of the 28th conference on Winter simulation, 1996

L. Devroye, Non-uniform random variate generation, , 1986

Omiros Papaspiliopoulos, Gareth O Roberts, Martin Skold, A general framework for the parametrization of hierarchical models, Statistical
Science, 2007

Michael C Fu, Gradient estimation, Handbooks in operations research and management science, 2006

Ranganath, Rajesh, Sean Gerrish, and David M. Blei. "Black Box Variational Inference." In AISTATS, pp. 814-822. 2014.

Mnih, Andriy, and Karol Gregor. "Neural variational inference and learning in belief networks." arXiv preprint arXiv:1402.0030 (2014).

Lázaro-Gredilla, Miguel. "Doubly stochastic variational Bayes for non-conjugate inference." (2014).

Wingate, David, and Theophane Weber. "Automated variational inference in probabilistic programming." arXiv preprint arXiv:1301.1299 (2013).

Paisley, John, David Blei, and Michael Jordan. "Variational Bayesian inference with stochastic search." arXiv preprint arXiv:1206.6430 (2012).

89

Some References

