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Abstract

Building Machines that Imagine and Reason:
Principles and Applications of Deep Generative Models

Deep generative models provide a solution to the problem of unsupervised learning, in which a machine 
learning system is required to discover the structure hidden within unlabelled data streams. Because they are 
generative, such models can form a rich imagery the world in which they are used: an imagination that can 
harnessed  to  explore  variations  in  data,  to  reason  about  the  structure  and  behaviour  of  the  world,  and 
ultimately, for decision-making. This tutorial looks at how we can build machine learning systems with a 
capacity for imagination using deep generative models, the types of probabilistic reasoning that they make 
possible, and the ways in which they can be used for decision making and acting. 

Deep generative models have widespread applications including those in density estimation, image denoising 
and in-painting, data compression, scene understanding, representation learning, 3D scene construction, semi-
supervised classification, and hierarchical control, amongst many others. After exploring these applications, 
we'll sketch a landscape of generative models, drawing-out three groups of models: fully-observed models, 
transformation models, and latent variable models. Different models require different principles for inference 
and we'll explore the different options available. Different combinations of  model and inference give rise to 
different  algorithms,  including  auto-regressive  distribution  estimators,  variational  auto-encoders,  and 
generative adversarial networks. Although we will emphasise deep generative models, and the latent-variable 
class in particular, the intention of the tutorial is to explore the general principles, tools and tricks that can be 
used  throughout  machine  learning.  These  reusable  topics  include  Bayesian  deep  learning,  variational 
approximations,  memoryless  and  amortised  inference,  and  stochastic  gradient  estimation.  We'll  end  by 
highlighting the topics that were not discussed, and imagine the future of generative models.



Machines that Imagine and Reason 3

New era of scientific
discovery

Disrupt and create 
new markets

Quest to 
solve intelligence

Statistical and 
mathematical 
foundations

What components form the ideal machine learning system?

Motivations for machine learning



Machines that Imagine and Reason 4

Why Generative Models

Part of a suite of  complementary learning systems

Move beyond associating 
inputs to outputs Understand and imagine 

how the world evolves

Recognise objects in the world 
and their factors of variation

Establish concepts as 
useful for reasoning and 

decision making

Detect surprising 
events in the world

Imagine and 
generate rich plans 

for the future
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Some Themes 
Design of probabilistic models 

Bayesian Deep Learning 
Memoryless and Amortised Inference 

Stochastic Optimisation 
Reasoning and Control 

Functions are deep networks 
Fully-connected, convolutional, recurrentf✓(·)

In some way, will involve the 
problem of density estimation.
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Landscape of  
Generative Models

Birds eye view of the  
current state of the art.

Part I

Inference and 
Learning

Principles and approximations 
that can be used to drive learning 

in different types of models. 
• Bayesian two-sample tests 
• Marginal likelihood estimation

x̂

x̃

Part III

A Model for  
Every Occasion

xk

xi

xj

f(x) Explore three classes of generative 
models,  their inductive biases, and 

implications for learning and 
algorithm design.

Part II

Tools  for  
Algorithm Building

Constructing scalable 
algorithms 

• Stochastic approximation 
• Amortised inference 
• Stochastic optimisation

Part IV

Data y

Encoder
q(z |y)

z ~ q(z | y)

Decoder
p(y |z)

y ~ p(y | z)

z
The Case of 

Variational Auto-
encoders

Explore different types of VAEs 
• Discrete and continuous 

latent variables. 
• Static, sequential, volumetric. 
• Differentiable and non-

differentiable fns.

Part V

Summary
Mention of things not 

discussed and wrap-up

Part VI



Landscape of 
Generative Models

Part I

Diversity of Applications and Progress  
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Data imputation | In-painting | Denoising
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Semi-supervised Classification

Auxiliary Deep Generative Models

(a) (b) (c) (d)
Figure 2. (a) True posterior of the prior p(z). (b) The approximation q�(z|a)q�(a) of the ADGM. (c) Prediction on the half-moon data
set after 10 epochs with only 3 labeled data points (black) for each class. (d) PCA plot on the 1st and 2nd principal component of the
corresponding auxiliary latent space.

4.2. Semi-supervised learning on two half-moons

To exemplify the power of the ADGM for semi-
supervised learning we have generated a 2D synthetic
dataset consisting of two half-moons (top and bot-
tom), where (xtop, ytop) = (cos([0,⇡]), sin([0,⇡])) and
(xbottom, ybottom) = (1� cos([0,⇡]), 1� sin([0,⇡])� 0.5),
with added Gaussian noise. The training set contains 1e4
samples divided into batches of 100 with 3 labeled data
points in each class and the test set contains 1e4 samples.
A good semi-supervised model will be able to learn the data
manifold for each of the half-moons and use this together
with the limited labeled information to build the classifier.

The ADGM converges close to 0% classification error in 10
epochs (cf. Fig. 2c), which is much faster than an equiv-
alent model without the auxiliary variable that converges
in more than 100 epochs. When investigating the auxiliary
variable we see that it finds a discriminating internal repre-
sentation of the data manifold and thereby aids the classifier
(cf. Fig. 2d).

4.3. Generative log-likelihood performance

We evaluate the generative performance of the unsuper-
vised auxiliary model, AVAE, using the MNIST dataset.
The inference and generative models are defined as
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where L denotes the number of stochastic layers.

We report the lower bound from Eq. (2) for 5000 impor-
tance weighted samples and use the same training and pa-
rameter settings as in Sønderby et al. (2016) with warm-

up2, batch normalization and 1 Monte Carlo and IW sample
for training.

 log p(x)

VAE+NF, L=1 (REZENDE AND MOHAMED, 2015) �85.10

IWAE, L=1, IW=1 (BURDA ET AL., 2015) �86.76

IWAE, L=1, IW=50 (BURDA ET AL., 2015) �84.78

IWAE, L=2, IW=1 (BURDA ET AL., 2015) �85.33

IWAE, L=2, IW=50 (BURDA ET AL., 2015) �82.90

VAE+VGP, L=2 (TRAN ET AL., 2015) �81.90

LVAE, L=5, IW=1 (SØNDERBY ET AL., 2016) �82.12

LVAE, L=5, FT, IW=10 (SØNDERBY ET AL., 2016) �81.74

AUXILIARY VAE (AVAE), L=1, IW=1 �84.59

AUXILIARY VAE (AVAE), L=2, IW=1 �82.97

Table 1. Unsupervised test log-likelihood on permutation invari-
ant MNIST for the normalizing flows VAE (VAE+NF), impor-
tance weighted auto-encoder (IWAE), variational Gaussian pro-
cess VAE (VAE+VGP) and Ladder VAE (LVAE) with FT denot-
ing the finetuning procedure from Sønderby et al. (2016), IW the
importance weighted samples during training, and L the number
of stochastic latent layers z1, .., zL.

We evaluate the negative log-likelihood for the 1 and 2 lay-
ered AVAE. We found that warm-up was crucial for activa-
tion of the auxiliary variables. Table 1 shows log-likelihood
scores for the permutation invariant MNIST dataset. The
methods are not directly comparable, except for the Lad-
der VAE (LVAE) (Sønderby et al., 2016), since the train-
ing is performed differently. However, they give a good
indication on the expressive power of the auxiliary vari-
able model. The AVAE is performing better than the VAE
with normalizing flows (Rezende and Mohamed, 2015) and
the importance weighted auto-encoder with 1 IW sample
(Burda et al., 2015). The results are also comparable to the
Ladder VAE with 5 latent layers (Sønderby et al., 2016)
and variational Gaussian process VAE (Tran et al., 2015).
As shown in Burda et al. (2015) and Sønderby et al. (2016)
increasing the IW samples and annealing the learning rate
will likely increase the log-likelihood.

2Temperature on the KL-divergence going from 0 to 1 within
the first 200 epochs of training.

Auxiliary Deep Generative Models

(a) (b) (c) (d)
Figure 2. (a) True posterior of the prior p(z). (b) The approximation q�(z|a)q�(a) of the ADGM. (c) Prediction on the half-moon data
set after 10 epochs with only 3 labeled data points (black) for each class. (d) PCA plot on the 1st and 2nd principal component of the
corresponding auxiliary latent space.

4.2. Semi-supervised learning on two half-moons

To exemplify the power of the ADGM for semi-
supervised learning we have generated a 2D synthetic
dataset consisting of two half-moons (top and bot-
tom), where (xtop, ytop) = (cos([0,⇡]), sin([0,⇡])) and
(xbottom, ybottom) = (1� cos([0,⇡]), 1� sin([0,⇡])� 0.5),
with added Gaussian noise. The training set contains 1e4
samples divided into batches of 100 with 3 labeled data
points in each class and the test set contains 1e4 samples.
A good semi-supervised model will be able to learn the data
manifold for each of the half-moons and use this together
with the limited labeled information to build the classifier.

The ADGM converges close to 0% classification error in 10
epochs (cf. Fig. 2c), which is much faster than an equiv-
alent model without the auxiliary variable that converges
in more than 100 epochs. When investigating the auxiliary
variable we see that it finds a discriminating internal repre-
sentation of the data manifold and thereby aids the classifier
(cf. Fig. 2d).

4.3. Generative log-likelihood performance

We evaluate the generative performance of the unsuper-
vised auxiliary model, AVAE, using the MNIST dataset.
The inference and generative models are defined as

q

�

(a, z|x) = q

�

(a1|x)q�(z1|a1, x) (19)
LY

i=2

q

�

(a

i

|a
i�1, x)q�(zi|ai, zi�1) ,

p

✓

(x, a, z) = p

✓

(x|z1)p(zL)p✓(aL|zL) (20)
L�1Y

i=1

p

✓

(z

i

|z
i+1)p✓(ai|z�i

) .

where L denotes the number of stochastic layers.

We report the lower bound from Eq. (2) for 5000 impor-
tance weighted samples and use the same training and pa-
rameter settings as in Sønderby et al. (2016) with warm-

up2, batch normalization and 1 Monte Carlo and IW sample
for training.

 log p(x)

VAE+NF, L=1 (REZENDE AND MOHAMED, 2015) �85.10

IWAE, L=1, IW=1 (BURDA ET AL., 2015) �86.76

IWAE, L=1, IW=50 (BURDA ET AL., 2015) �84.78

IWAE, L=2, IW=1 (BURDA ET AL., 2015) �85.33

IWAE, L=2, IW=50 (BURDA ET AL., 2015) �82.90

VAE+VGP, L=2 (TRAN ET AL., 2015) �81.90

LVAE, L=5, IW=1 (SØNDERBY ET AL., 2016) �82.12

LVAE, L=5, FT, IW=10 (SØNDERBY ET AL., 2016) �81.74

AUXILIARY VAE (AVAE), L=1, IW=1 �84.59

AUXILIARY VAE (AVAE), L=2, IW=1 �82.97

Table 1. Unsupervised test log-likelihood on permutation invari-
ant MNIST for the normalizing flows VAE (VAE+NF), impor-
tance weighted auto-encoder (IWAE), variational Gaussian pro-
cess VAE (VAE+VGP) and Ladder VAE (LVAE) with FT denot-
ing the finetuning procedure from Sønderby et al. (2016), IW the
importance weighted samples during training, and L the number
of stochastic latent layers z1, .., zL.

We evaluate the negative log-likelihood for the 1 and 2 lay-
ered AVAE. We found that warm-up was crucial for activa-
tion of the auxiliary variables. Table 1 shows log-likelihood
scores for the permutation invariant MNIST dataset. The
methods are not directly comparable, except for the Lad-
der VAE (LVAE) (Sønderby et al., 2016), since the train-
ing is performed differently. However, they give a good
indication on the expressive power of the auxiliary vari-
able model. The AVAE is performing better than the VAE
with normalizing flows (Rezende and Mohamed, 2015) and
the importance weighted auto-encoder with 1 IW sample
(Burda et al., 2015). The results are also comparable to the
Ladder VAE with 5 latent layers (Sønderby et al., 2016)
and variational Gaussian process VAE (Tran et al., 2015).
As shown in Burda et al. (2015) and Sønderby et al. (2016)
increasing the IW samples and annealing the learning rate
will likely increase the log-likelihood.

2Temperature on the KL-divergence going from 0 to 1 within
the first 200 epochs of training.

Published as a conference paper at ICLR 2016

Figure 2: Comparison between k-means (left), RIM (middle) and CatGAN (rightmost three) – with
neural networks – on the “circles” dataset with K = 2. Blue and green denote class assignments to
the two different classes. For CatGAN we visualize class assignments – both on the dataset and on
a larger region of the input domain – and generated samples. Best viewed in color.

Algorithm

PI-MNIST test error (%) with n labeled examples
n = 100 n = 1000 All

MTC (Rifai et al., 2011) 12.03 100 0.81
PEA (Bachman et al., 2014) 10.79 2.33 1.08
PEA+ (Bachman et al., 2014) 5.21 2.67 -
VAE+SVM (Kingma et al., 2014) 11.82 (± 0.25) 4.24 (± 0.07) -
SS-VAE (Kingma et al., 2014) 3.33 (± 0.14) 2.4 (± 0.02) 0.96
Ladder �-model (Rasmus et al., 2015) 4.34 (± 2.31) 1.71 (± 0.07) 0.79 (± 0.05)
Ladder full (Rasmus et al., 2015) 1.13 (± 0.04) 1.00 (± 0.06) -
RIM + NN 16.19 (± 3.45) 10.41 (± 0.89)
GAN + SVM 28.71 (± 7.41) 13.21 (± 1.28)
CatGAN (unsupervised) 9.7
CatGAN (semi-supervised) 1.91 (± 0.1) 1.73 (± 0.18) 0.91

Table 1: Classification error, in percent, for the permutation invariant MNIST problem with a re-
duced number of labels. Results are averaged over 10 different sets of labeled examples.

compare the CatGAN algorithm with standard k-means clustering and RIM with neural networks
as discriminative models, which amounts to removing the generator from the CatGAN model and
adding `2 regularization (see Section B in the appendix for an explanation). We considered three
standard synthetic datasets – with feature dimensionality two, thus x 2 R2 – for which we assumed
the optimal number of clusters K do be known: the “two moons” dataset (which contains two
clusters), the “circles” arrangement (again containing two clusters) and a simple dataset with three
isotropic Gaussian blobs of data.

In Figure 2 we show the results of that experiment for the “circles” dataset (plots for the other two
experiments are relegated to Figures 4-6 in the appendix due to space constraints). In summary,
the simple clustering assignment with three data blobs is solved by all algorithms. For the two
more difficult examples both k-means and RIM fail to “correctly” identify the clusters: (1) k-means
fails due to the euclidean distance measure it employs to evaluate distances between data points
and cluster centers, (2) in RIM the objective function only specifies that the deep network has to
separate the data into two equal classes, without any geometric constraints 4. In the CatGAN model,
on the other hand, the discriminator has to place its decision boundaries such that it can easily detect
a non-optimal adversarial generator which seems to coincide with the correct cluster assignment.
Additionally, the generator quickly learns to generate the datasets in all cases.

4.2 UNSUPERVISED AND SEMI-SUPERVISED LEARNING OF IMAGE FEATURES

We next evaluate the capabilities of the CatGAN model on two image recognition datasets. We
performed experiments using fully connected and convolutional networks on MNIST (LeCun et al.,
1989) and CIFAR-10 (Krizhevsky & Hinton, 2009). We either used the full set of labeled exam-
ples or a reduced set of labeled examples and kept the remaining examples for semi-supervised or
unsupervised learning.

4We tried to rectify this by adding regularization (we tried both `2 regularization and adding Gaussian noise)
but that did not yield any improvement
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3D Scene Generation
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Rapid Scene Understanding
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models
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Figure 10. 3D objects: The task is to infer the identity and pose
of a 3D object. (a) Images from the dataset. (b) Reconstructions
produced by re-rendering the inference made by an AIR network
trained on the data without supervision. (c) Reconstructions pro-
duced by an AIR network trained with ground-truth labels. Note
poor performance on cubes due to their symmetry. (d) Recon-
structions obtained by performing direct gradient descent on the
scene representation to minimize reconstruction error. This ap-
proach is less stable and much more susceptible to local minima.

way of imparting knowledge to the system: we specify the
generative model via a 3D renderer, i.e., we completely
specify how any scene representation is transformed to pro-
duce the pixels in an image. Therefore the task is to learn
to infer the counts, identities and poses of several objects,
given different images containing these objects and an im-
plementation of a 3D renderer from which we can draw
new samples. This formulation of computer vision is of-
ten called ‘vision as inverse graphics’ (see e.g., Grenander
1976; Loper & Black 2014; Jampani et al. 2015).

The primary challenge in this view of computer vision is
that of inference. While it is relatively easy to specify high-
quality generative models in the form of probabilistic ren-
derers, performing posterior inference is either extremely
computationally expensive or prone to getting stuck in lo-
cal minima (e.g., via optimization or Markov chain Monte
Carlo). Therefore it would be highly desirable amortize
this cost over training in the form of an inference network.
In addition, probabilistic renderers (and in particular 3D
renderers) typically are not capable of providing gradients
with respect to their inputs, and 3D scene representations
often involve discrete variables, e.g., mesh identities. We
address these challenges by using finite-differencing to ob-
tain a gradient through the renderer, using the score func-
tion estimator to get gradients with respect to discrete vari-
ables, and using an AIR inference architecture to handle
correlated posteriors and variable-length representations.

We demonstrate the capabilities of this approach by first
considering scene consisting of only one of three objects:
a red cube, a blue sphere, and a textured cylinder (see
Fig. 10a). Since the scenes only consist of single objects,
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Figure 11. 3D scenes: AIR can learn to recover the counts, identi-
ties and poses of multiple objects in a 3D table-top scene. (a) Im-
ages from the dataset. (b) Inference using AIR produces a scene
description which we visualize using the specified renderer. AIR
does occasionally make mistakes, e.g., image 5.

the task is only to infer the identity (cube, sphere, cylin-
der) and pose (position and rotation) of the object present
in the image. We train a single-step (N = 1) AIR infer-
ence network for this task. The network is only provided
with unlabeled images and is trained to maximize the like-
lihood of those images under the model specified by the
renderer. The quality of the scene representations produced
by the learned inference network can be visually inspected
in Fig. 10b. The network accurately and reliably infers the
identity and pose of the object present in the scene. In con-
trast, an identical network trained to predict the ground-
truth identity and pose values of the training data (in a sim-
ilar style to Kulkarni et al. 2015a) has much more difficulty
in accurately determining the cube’s orientation (Fig. 10c).
The supervised loss forces the network to predict the ex-
act angle of rotation. However this is not identifiable from
the image due to the rotational symmetries of some of the
objects, which leads to conditional probabilities that are
multi-modal and difficult to represent using standard net-
work architectures. We also compare with direct optimiza-
tion of the likelihood from scratch for every test image
(Fig. 10d), and observe that this method is slower, less sta-
ble and more susceptible to local minima. So not only does
amortization reduce the cost of inference, but it also over-
comes the pitfalls of independent gradient optimization.

We finally consider a more complex setup, where we infer
the counts, identities and positions of a variable number of
crockery items in a table-top scene (Fig. 11a and Fig. 12).
This would be of critical importance to a robot, say, which
is in the process of interacting with the objects and the ta-
ble. The goal is to learn to achieve this task with as little su-
pervision as possible, and indeed we observe that with AIR
it is possible to do so with no supervision other than a spec-
ification of the renderer. This setting can be extended to
include additional scene variables, such as the camera po-
sition, as we demonstrate in appendix H (Fig. 19). We show
reconstructions of AIR’s inferences in Fig. 11b and Fig. 12,
which are for the most part robust and accurate. We pro-
vide a quantitative comparison of AIR’s inference robust-

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models

Figure 12. 3D scenes details: Left: Ground-truth object and camera positions with inferred positions overlayed in red (note that inferred
cup is closely aligned with ground-truth, thus not clearly visible). We demonstrate fast inference of all relevant scene elements using the
AIR framework. Middle: AIR achieves significantly lower reconstruction error than a naive supervised implementation, and achieves
much higher count inference accuracy. Right: Heatmap of locations on the table in which objects are detected at each time-step (top).
The learned policy appears to be more dependent on identity (bottom).

ness and accuracy with that of a fully supervised network
in Fig. 12. We consider two scenarios: one where each ob-
ject type only appears exactly once, and one where objects
can repeat in the scene. A naive supervised setup struggles
greatly with object repetitions or when an arbitrary order-
ing of the objects is imposed by the labels, however training
is more straightforward when there are no repetitions. AIR
achieves equivalent error and competitive count accuracy
despite the added difficulty of object repetitions.

4. Related Work
Deep neural networks have had great success in learning to
predict various quantities from images, e.g., object classes
(Krizhevsky et al., 2012), camera positions (Kendall et al.,
2015) and actions (Mnih et al., 2015). These methods work
best when large labeled datasets are available for training.

At the other end of the spectrum, e.g., in ‘vision as inverse
graphics’, only a generative model is specified in advance
and prediction is treated as an inference problem, which
is then solved using MCMC or message passing at test-
time. These models range from highly specified (Milch
et al., 2005; Mansinghka et al., 2013), to partially specified
(Zhu & Mumford, 2006; Roux et al., 2011; Heess et al.,
2011; Eslami & Williams, 2014; Tang et al., 2013; 2014),
to largely unspecified (Hinton, 2002; Salakhutdinov & Hin-
ton, 2009; Eslami et al., 2012). Inference is very challeng-
ing and almost always the bottle-neck in model design.

Hinton et al. (1995); Tu & Zhu (2002); Kulkarni et al.
(2015a); Jampani et al. (2015); Wu et al. (2015) exploit
data-driven predictions to empower the ‘vision as inverse
graphics’ paradigm. For instance, in PICTURE, Kulkarni
et al. (2015a) use a deep network to distill the results of
slow MCMC, speeding up predictions at test-time.

Variational auto-encoders (Rezende et al., 2014; Kingma &
Ba, 2014) and their discrete counterparts (Mnih & Gregor,
2014) made the important contribution of showing how the
gradient computations for learning of amortized inference

and generative models could be interleaved, allowing both
to be learned simultaneously in an end-to-end fashion (see
also Schulman et al. 2015). Works like that of Hinton et al.
(2011); Kulkarni et al. (2015b) aim to learn disentangled
representations in an auto-encoding framework using spe-
cial network structures and / or careful training schemes.

It is also worth noting that attention mechanisms in neural
networks have been studied in discriminative and genera-
tive settings, e.g. by Mnih et al. (2014); Ba et al. (2015);
Jaderberg et al. (2015) and Gregor et al. (2015).

AIR draws upon, extends and links these ideas. Similar to
our work is also Huang & Murphy (2015), however they
assume a fixed number of objects. By its nature AIR is also
related to the following problems: counting (Lempitsky &
Zisserman, 2010; Zhang et al., 2015), trans-dimensionality
(Graves, 2016), sparsity (Bengio et al., 2009) and gradient
estimation through renderers (Loper & Black, 2014). It is
the combination of these elements that unlocks the full ca-
pabilities of the proposed approach.

5. Discussion
We presented several principled models that not only learn
to count, locate, classify and reconstruct the elements of a
scene, but do so in a fraction of a second at test-time. The
main ingredients are (a) building in meaning using appro-
priately structured models, (b) amortized inference that is
attentive, iterative and variable-length, and (c) end-to-end
learning. Learning is most successful when the variance
of the gradients is low and the likelihood is well suited
to the data. It will be of interest to examine the scaling
of variance with the number of objects and more sophis-
ticated likelihoods (e.g., occlusion). It is straightforward
to extend the framework to semi- or fully-supervised set-
tings. Furthermore, the framework admits a plug-and-play
approach where existing state-of-the-art detectors, classi-
fiers and renderers are used as sub-components of an AIR
inference network. We plan to investigate these lines of
research in future work.



Machines that Imagine and Reason 13

One-shot Generalisation



Machines that Imagine and Reason 14

Environment Simulation

Action-dependent simulator Truth from Emulator 
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(a) (b) (c)

Figure 2: High-resolution screenshots of the Labyrinth environments. (a) Forage and Avoid showing
the apples (positive rewards) and lemons (negative rewards). (b) Double T-maze showing cues at
the turning points. (c) Top view of a Double T-maze configuration. The cues indicate the reward is
located at the top left.

state was discarded. The k-nearest-neighbour lookups used k = 50. The discount rate was set to
� = 0.99. Exploration is achieved by using an ✏-greedy policy with ✏ = 0.005. As a baseline, we
used A3C [22]. Labyrinth levels have deterministic transitions and rewards, but the initial location
and facing direction are randomised, and the environment is much richer, being 3-dimensional. For
this reason, unlike Atari, experiments on Labyrinth encounter very few exact matches in the buffers
of QEC-values; less than 0.1% in all three levels.

Each level is progressively more difficult. The first level, called Forage, requires the agent to collect
apples as quickly as possible by walking through them. Each apple provides a reward of 1. A simple
policy of turning until an apple is seen and then moving towards it suffices here. Figure 1 shows that
the episodic controller found an apple seeking policy very quickly. Eventually A3C caught up, and
final outperforms the episodic controller with a more efficient strategy for picking up apples.

The second level, called Forage and Avoid involves collecting apples, which provide a reward of 1,
while avoiding lemons which incur a reward of �1. The level is depicted in Figure 2(a). This level
requires only a slightly more complicated policy then Forage (same policy plus avoid lemons) yet
A3C took over 40 million steps to the same performance that episodic control attained in fewer than
3 million frames.

The third level, called Double-T-Maze, requires the agent to walk in a maze with four ends (a map
is shown in Figure 2(c)) one of the ends contains an apple, while the other three contain lemons.
At each intersection the agent is presented with a colour cue that indicates the direction in which
the apple is located (see Figure 2(b)): left, if red, or right, if green. If the agent walks through a
lemon it incurs a reward of �1. However, if it walks through the apple, it receives a reward of 1, is
teleported back to the starting position and the location of the apple is resampled. The duration of an
episode is limited to 1 minute in which it can reach the apple multiple times if it solves the task fast
enough. Double-T-Maze is a difficult RL problem: rewards are sparse. In fact, A3C never achieved
an expected reward above zero. Due to the sparse reward nature of the Double T-Maze level, A3C did
not update the policy strongly enough in the few instances in which a reward is encountered through
random diffusion in the state space. In contrast, the episodic controller exhibited behaviour akin to
one-shot learning on these instances, and was able to learn from the very few episodes that contain
any rewards different from zero. This allowed the episodic controller to observe between 20 and 30
million frames to learn a policy with positive expected reward, while the parametric policies never
learnt a policy with expected reward higher than zero. In this case, episodic control thrived in sparse
reward environment as it rapidly latched onto an effective strategy.

4.3 Effect of number of nearest neighbours on final score

Finally, we compared the effect of varying k (the number of nearest neighbours) on both Labyrinth
and Atari tasks using VAE features. In our experiments above, we noticed that on Atari re-visiting
the same state was common, and that random projections typically performed the same or better
than VAE features. One further interesting feature is that the learnt VAEs on Atari games do not
yield a higher score as the number of neighbours increases, except on one game, Q*bert, where
VAEs perform reasonably well (see Figure 3a). On Labyrinth levels, we observed that the VAEs
outperformed random projections and the agent rarely encountered the same state more than once.
Interestingly for this case, Figure 3b shows that increasing the number of nearest neighbours has a

7

Representation Learning for Control
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Visual Concept Learning
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Density-based Exploration

No bonus

With bonus

Figure 4: “Known world” of a DQN agent trained for 50 million frames with (bottom) and without
(top) count-based exploration bonuses, in MONTEZUMA’S REVENGE.

7.3 Improving exploration for actor-critic methods.

We next turn our attention to actor-critic methods, specifically the A3C (asynchronous actor-critic)
algorithm of Mnih et al. (2016). One appeal of actor-critic methods is that their explicit separation
of policy and Q-function parameters allows for a richer behaviour space. This very separation, how-
ever, often leads to deficient exploration: to produce any sensible results, the A3C policy parameters
must be regularized with an entropy cost (Mnih et al., 2016). As we now show, our count-based
exploration bonus leads to significantly improved A3C performance.

We first trained A3C on 60 Atari 2600 games, with and without the exploration bonus given by (6).
We refer to our augmented algorithm as A3C+. From a parameter sweep over 5 training games we
found the parameter � = 0.01 to work best. Summarily, we find that A3C fails to learn in 15 games,
in the sense that the agent does not achieve a score 50% better than random. In comparison, there
are only 10 games for which A3C+ fails to improve on the random agent; of these, 8 are games
where DQN fails in the same sense. Details and full results are given in the appendix.

To demonstrate the benefits of augmenting A3C with our exploration bonus, we computed a baseline
score (Bellemare et al., 2013) for A3C+ over time. If rg is the random score on game g, ag the
performance of A3C on g after 200 million frames, and sg,t the performance of A3C+ at time t,
then the corresponding baseline score at time t is

zg,t :=
sg,t �min{rg, ag}

max{rg, ag}�min{rg, ag}
.

Figure 5 shows the median and first and third quartile of these scores across games. Considering the
top quartile, we find that A3C+ reaches A3C’s final performance on at least 15 games within 100
million frames, and in fact reaches much higher performance levels by the end of training.

7.4 Comparing exploration bonuses.

Next we compare the effect of using different exploration bonuses derived from our density model.
We consider the following variants:

• no exploration bonus,

• ˆNn(x)�1/2, as per MBIE-EB (Strehl and Littman, 2008);

• ˆNn(x)�1, as per BEB (Kolter and Ng, 2009); and
• PGn(x), related to compression progress (Schmidhuber, 2008).

The exact form of these bonuses is analogous to (6). We compare these variants after 10, 50, 100,
and 200 million frames of training, using the same experimental setup as in the previous section. To

15
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Auxiliary Deep Generative Models

(a) (b) (c) (d)
Figure 2. (a) True posterior of the prior p(z). (b) The approximation q�(z|a)q�(a) of the ADGM. (c) Prediction on the half-moon data
set after 10 epochs with only 3 labeled data points (black) for each class. (d) PCA plot on the 1st and 2nd principal component of the
corresponding auxiliary latent space.

4.2. Semi-supervised learning on two half-moons

To exemplify the power of the ADGM for semi-
supervised learning we have generated a 2D synthetic
dataset consisting of two half-moons (top and bot-
tom), where (xtop, ytop) = (cos([0,⇡]), sin([0,⇡])) and
(xbottom, ybottom) = (1� cos([0,⇡]), 1� sin([0,⇡])� 0.5),
with added Gaussian noise. The training set contains 1e4
samples divided into batches of 100 with 3 labeled data
points in each class and the test set contains 1e4 samples.
A good semi-supervised model will be able to learn the data
manifold for each of the half-moons and use this together
with the limited labeled information to build the classifier.

The ADGM converges close to 0% classification error in 10
epochs (cf. Fig. 2c), which is much faster than an equiv-
alent model without the auxiliary variable that converges
in more than 100 epochs. When investigating the auxiliary
variable we see that it finds a discriminating internal repre-
sentation of the data manifold and thereby aids the classifier
(cf. Fig. 2d).

4.3. Generative log-likelihood performance

We evaluate the generative performance of the unsuper-
vised auxiliary model, AVAE, using the MNIST dataset.
The inference and generative models are defined as

q

�

(a, z|x) = q

�

(a1|x)q�(z1|a1, x) (19)
LY

i=2

q

�
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i

|a
i�1, x)q�(zi|ai, zi�1) ,
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✓

(x, a, z) = p

✓

(x|z1)p(zL)p✓(aL|zL) (20)
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) .

where L denotes the number of stochastic layers.

We report the lower bound from Eq. (2) for 5000 impor-
tance weighted samples and use the same training and pa-
rameter settings as in Sønderby et al. (2016) with warm-

up2, batch normalization and 1 Monte Carlo and IW sample
for training.

 log p(x)

VAE+NF, L=1 (REZENDE AND MOHAMED, 2015) �85.10

IWAE, L=1, IW=1 (BURDA ET AL., 2015) �86.76

IWAE, L=1, IW=50 (BURDA ET AL., 2015) �84.78

IWAE, L=2, IW=1 (BURDA ET AL., 2015) �85.33

IWAE, L=2, IW=50 (BURDA ET AL., 2015) �82.90

VAE+VGP, L=2 (TRAN ET AL., 2015) �81.90

LVAE, L=5, IW=1 (SØNDERBY ET AL., 2016) �82.12

LVAE, L=5, FT, IW=10 (SØNDERBY ET AL., 2016) �81.74

AUXILIARY VAE (AVAE), L=1, IW=1 �84.59

AUXILIARY VAE (AVAE), L=2, IW=1 �82.97

Table 1. Unsupervised test log-likelihood on permutation invari-
ant MNIST for the normalizing flows VAE (VAE+NF), impor-
tance weighted auto-encoder (IWAE), variational Gaussian pro-
cess VAE (VAE+VGP) and Ladder VAE (LVAE) with FT denot-
ing the finetuning procedure from Sønderby et al. (2016), IW the
importance weighted samples during training, and L the number
of stochastic latent layers z1, .., zL.

We evaluate the negative log-likelihood for the 1 and 2 lay-
ered AVAE. We found that warm-up was crucial for activa-
tion of the auxiliary variables. Table 1 shows log-likelihood
scores for the permutation invariant MNIST dataset. The
methods are not directly comparable, except for the Lad-
der VAE (LVAE) (Sønderby et al., 2016), since the train-
ing is performed differently. However, they give a good
indication on the expressive power of the auxiliary vari-
able model. The AVAE is performing better than the VAE
with normalizing flows (Rezende and Mohamed, 2015) and
the importance weighted auto-encoder with 1 IW sample
(Burda et al., 2015). The results are also comparable to the
Ladder VAE with 5 latent layers (Sønderby et al., 2016)
and variational Gaussian process VAE (Tran et al., 2015).
As shown in Burda et al. (2015) and Sønderby et al. (2016)
increasing the IW samples and annealing the learning rate
will likely increase the log-likelihood.

2Temperature on the KL-divergence going from 0 to 1 within
the first 200 epochs of training.
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Progress in Generative Models
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Progress in Generative Models

ImageNet

Conv- 
DRAW

Pixel  
RNNDRAWVAE Conv. Generative  

Adversarial Network

Under review as a conference paper at ICLR 2016

Figure 11: Generations of a DCGAN that was trained on the Imagenet-1k dataset.
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Conceptual Compression

Figure 10. Generated samples from a network trained on 64 ⇥ 64 ImageNet with input scaling � = 0.4. Qualitatively asking the
model to be less precise seems to lead to visually more appealing samples.
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Machine Learning Framework

1. Models 2. Learning 
Principles

3. Algorithms
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Types of Generative Models

Models

Fully-observed  
models

xk

xi

xj

f(x) Model observed data directly  
without introducing any new  

unobserved local variables. z

f(z)

x

Transformation  
models

Model data as a transformation  
of an unobserved noise source  

using a parameterised function.

Latent variable modelsz

x

f(z) Introduce an unobserved  
random variable for every observed  
data point to explain hidden causes.
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Smorgasbord of Learning Principles

Learning 
Principles

✦ Exact methods (conjugacy, enumeration) 
✦ Numerical integration (Quadrature) 
✦ Generalised method of moments 
✦ Maximum likelihood (ML) 
✦ Maximum a posteriori (MAP) 
✦ Laplace approximation 
✦ Integrated nested Laplace approximations (INLA) 
✦ Expectation Maximisation (EM) 
✦ Monte Carlo methods (MCMC, SMC, ABC) 
✦ Noise contrastive estimation (NCE) 
✦ Cavity Methods (EP) 
✦ Variational methods

For a given model, there are  
many competing inference methods.
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Combining Models and Inference

A given model and learning principle can be implemented in many ways.

zi

xi xj

zj

xk

Restricted Boltzmann Machine  
+ maximum likelihood

• Contrastive Divergence 
• Persistent Contrastive Divergence 
• Parallel Tempering 
• Natural gradients

z

x

f(z)

Latent variable model  
+ variational inference

• VEM algorithm 
• Expectation propagation 
• Approximate message passing 
• Variational auto-encoders

Convolutional neural network  
+ penalised maximum likelihood

• Optimisation methods (SGD,  Adagrad) 
• Regularisation (L1, L2, batchnorm, dropout)



A Model for  
Every Occasion

Part II

xk

xi

xj

f(x)

Explore three classes of generative 
models, their inductive biases, and 

implications for learning and 
algorithm design.
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Types of Generative Models

Latent variable  
models

z

x

f(z)

Fully-observed  
modelsxk

xi

xj

f(x)

Transformation  
models

z

f(z)

x

Computational complexity 
Modelling capacity 
Bias, uncertainty, calibration 
Interpretability

Data: binary, real-valued, nominal, 
strings, images. 
Dependency: independent, sequential, 
temporal, spatial. 
Representation: continuous or discrete 
Dimension: parametric or non-parametric
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Fully-observed Models

Fully-observed models
xk

xi

xj

f(x) Model observed data directly  
without introducing any new 

unobserved local variables. 

Model Parameters are 
global variables.

Stochastic activations 
& unobserved 

random variables are 
local variables. 

p(x) =
Y

i

p(xi|f(x<i;✓))

xt xt+1 xt+2 xt+3 …

M
ar

ko
v 

M
od

els

x1 ⇠ Cat(x1|⇡)

x2 ⇠ Cat(x2|⇡(x1))
. . .

xi ⇠ Cat(xi|⇡(x<n))

All conditional probabilities  
described by deep networks.
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Fully-observed Models

+ Can directly encode how observed points are related. 
+ Any data type can be used 
+ For directed graphical models:  

+ Parameter learning simple: Log-likelihood is directly computable, no 
approximation needed.  

+ Easy to scale-up to large models, many optimisation tools available. 
- Order sensitive. 

- For undirected models,  
- Parameter learning difficult: Need to compute normalising constants. 

- Generation can be slow: iterate through elements sequentially, or using a 
Markov chain.

White Whale Hartebeest

Pixel CNN

Properties
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Model-space Visualisation
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Markov Models
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Boltzmann Machines
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and Potts Models

Gaussian MRFs
Log-linear models
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Under review as a conference paper at ICLR 2016

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 ⇥ 64 pixel image. Notably, no
fully connected or pooling layers are used.

suggested value of 0.9 resulted in training oscillation and instability while reducing it to 0.5 helped
stabilize training.

4.1 LSUN

As visual quality of samples from generative image models has improved, concerns of over-fitting
and memorization of training samples have risen. To demonstrate how our model scales with more
data and higher resolution generation, we train a model on the LSUN bedrooms dataset containing
a little over 3 million training examples. Recent analysis has shown that there is a direct link be-
tween how fast models learn and their generalization performance (Hardt et al., 2015). We show
samples from one epoch of training (Fig.2), mimicking online learning, in addition to samples after
convergence (Fig.3), as an opportunity to demonstrate that our model is not producing high quality
samples via simply overfitting/memorizing training examples. No data augmentation was applied to
the images.

4.1.1 DEDUPLICATION

To further decrease the likelihood of the generator memorizing input examples (Fig.2) we perform a
simple image de-duplication process. We fit a 3072-128-3072 de-noising dropout regularized RELU
autoencoder on 32x32 downsampled center-crops of training examples. The resulting code layer
activations are then binarized via thresholding the ReLU activation which has been shown to be an
effective information preserving technique (Srivastava et al., 2014) and provides a convenient form
of semantic-hashing, allowing for linear time de-duplication . Visual inspection of hash collisions
showed high precision with an estimated false positive rate of less than 1 in 100. Additionally, the
technique detected and removed approximately 275,000 near duplicates, suggesting a high recall.

4.2 FACES

We scraped images containing human faces from random web image queries of peoples names. The
people names were acquired from dbpedia, with a criterion that they were born in the modern era.
This dataset has 3M images from 10K people. We run an OpenCV face detector on these images,
keeping the detections that are sufficiently high resolution, which gives us approximately 350,000
face boxes. We use these face boxes for training. No data augmentation was applied to the images.
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Transformation Models

z

f(z)
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Transformation models

Transform an unobserved  
noise source using a  

parameterised function.
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Change of variables for invertible functions

x = f(z;✓)

z ⇠ N (0, I)

The transformation function is parameterised by a linear or 
deep network (fully-connected, convolutional or recurrent).
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Transformation Models

+ Easy sampling 
+ Easy to compute expectations without knowing final distribution. 
+ Can exploit with large-scale classifiers and convolutional networks. 
- Difficult to satisfy constraints: Difficult to maintain invertibility, and 

challenging optimisation.  
- Lack of noise model (likelihood): 

- Difficult to extend to generic data types 
- Difficult to account for noise in observed data. 
- Hard to compute marginalised likelihood for model scoring, 

comparison and selection.

Convolutional generative  
adversarial network

Under review as a conference paper at ICLR 2016

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate.

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds.

4.3 IMAGENET-1K

We use Imagenet-1k (Deng et al., 2009) as a source of natural images for unsupervised training. We
train on 32⇥ 32 min-resized center crops. No data augmentation was applied to the images.

5

Bedrooms

Properties
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Latent Variable Models

Latent variable modelsz

x

f(z) Introduce an unobserved  
local random variables that  

represents hidden causes.
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Latent Variable Models

Properties
+ Easy sampling.  
+ Easy way to include hierarchy and depth. 
+ Easy to encode structure believed to generate the data 
+ Avoids order dependency assumptions: marginalisation of latent 

variables induces dependencies. 
+ Latents provide compression and representation the data. 
+ Scoring, model comparison and selection possible using the 

marginalised likelihood. 
- Inversion process to determine latents corresponding to a input is 

difficult in general 
- Difficult to compute marginalised likelihood requiring 

approximations. 
- Not easy to specify rich approximations for latent posterior 

distribution.

Convolutional  
DRAW

Conceptual Compression

Figure 10. Generated samples from a network trained on 64 ⇥ 64 ImageNet with input scaling � = 0.4. Qualitatively asking the
model to be less precise seems to lead to visually more appealing samples.
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Model-space Visualisation
Latent variable models
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Deep Gaussian 
processes
Recurrent Gaussian
Process
GP State space model

Indian buffet process
Dirichlet process
mixture

Hidden Markov Model
Discrete LVM
Sparse LVMs

PCA, factor analysis
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components analysis
Gaussian LDS
Latent Gauss Field

Nonlinear factor 
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Nonlinear Gaussian 
belief network
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Part III

Inference and 
Learning

Principles and approximations 
that can be used to drive learning 

in different types of models. 
• Model evidence 
• Two-sample testing
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Inferential Problems

Common inference problems are:

Evidence Estimation p(x) =

Z
p(x, z)dz

Moment Computation E[f(z)|x] =
Z

f(z)p(z|x)dz

Prediction p(xt+1) =

Z
p(xt+1|xt)p(xt)dxt

Hypothesis Testing B = log p(x|H1)� log p(x|H2)
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Bayesian Model Evidence

We take steps to improve the model evidence 
for given data samples.

Integral is intractable in general 
and requires approximation.

Model evidence (or marginal likelihood, partition function):  
Integrating out any global and local variables enables 

model scoring, comparison, selection, moment estimation, 
normalisation, posterior computation and prediction.

Basic idea: Transform 
the integral into an 

expectation over a simple, 
known distribution.

z

x

f(z)

Learning principle: Model Evidence 
532 11. SAMPLING METHODS

Figure 11.8 Importance sampling addresses the prob-
lem of evaluating the expectation of a func-
tion f(z) with respect to a distribution p(z)
from which it is difficult to draw samples di-
rectly. Instead, samples {z(l)} are drawn
from a simpler distribution q(z), and the
corresponding terms in the summation are
weighted by the ratios p(z(l))/q(z(l)).

p(z) f(z)

z

q(z)

Furthermore, the exponential decrease of acceptance rate with dimensionality is a
generic feature of rejection sampling. Although rejection can be a useful technique
in one or two dimensions it is unsuited to problems of high dimensionality. It can,
however, play a role as a subroutine in more sophisticated algorithms for sampling
in high dimensional spaces.

11.1.4 Importance sampling
One of the principal reasons for wishing to sample from complicated probability

distributions is to be able to evaluate expectations of the form (11.1). The technique
of importance sampling provides a framework for approximating expectations di-
rectly but does not itself provide a mechanism for drawing samples from distribution
p(z).

The finite sum approximation to the expectation, given by (11.2), depends on
being able to draw samples from the distribution p(z). Suppose, however, that it is
impractical to sample directly from p(z) but that we can evaluate p(z) easily for any
given value of z. One simplistic strategy for evaluating expectations would be to
discretize z-space into a uniform grid and to evaluate the integrand as a sum of the
form

E[f ] ≃
L∑

l=1

p(z(l))f(z(l)). (11.18)

An obvious problem with this approach is that the number of terms in the summation
grows exponentially with the dimensionality of z. Furthermore, as we have already
noted, the kinds of probability distributions of interest will often have much of their
mass confined to relatively small regions of z space and so uniform sampling will be
very inefficient because in high-dimensional problems, only a very small proportion
of the samples will make a significant contribution to the sum. We would really like
to choose the sample points to fall in regions where p(z) is large, or ideally where
the product p(z)f(z) is large.

As in the case of rejection sampling, importance sampling is based on the use
of a proposal distribution q(z) from which it is easy to draw samples, as illustrated
in Figure 11.8. We can then express the expectation in the form of a finite sum over

p(x) =

Z
p(x, z)dz
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Importance Sampling

Conditions 
• q(z|x)>0, when f(z)p(z) ≠ 0. 
• Easy to sample from q(z).

532 11. SAMPLING METHODS

Figure 11.8 Importance sampling addresses the prob-
lem of evaluating the expectation of a func-
tion f(z) with respect to a distribution p(z)
from which it is difficult to draw samples di-
rectly. Instead, samples {z(l)} are drawn
from a simpler distribution q(z), and the
corresponding terms in the summation are
weighted by the ratios p(z(l))/q(z(l)).

p(z) f(z)

z

q(z)

Furthermore, the exponential decrease of acceptance rate with dimensionality is a
generic feature of rejection sampling. Although rejection can be a useful technique
in one or two dimensions it is unsuited to problems of high dimensionality. It can,
however, play a role as a subroutine in more sophisticated algorithms for sampling
in high dimensional spaces.

11.1.4 Importance sampling
One of the principal reasons for wishing to sample from complicated probability

distributions is to be able to evaluate expectations of the form (11.1). The technique
of importance sampling provides a framework for approximating expectations di-
rectly but does not itself provide a mechanism for drawing samples from distribution
p(z).

The finite sum approximation to the expectation, given by (11.2), depends on
being able to draw samples from the distribution p(z). Suppose, however, that it is
impractical to sample directly from p(z) but that we can evaluate p(z) easily for any
given value of z. One simplistic strategy for evaluating expectations would be to
discretize z-space into a uniform grid and to evaluate the integrand as a sum of the
form

E[f ] ≃
L∑

l=1

p(z(l))f(z(l)). (11.18)

An obvious problem with this approach is that the number of terms in the summation
grows exponentially with the dimensionality of z. Furthermore, as we have already
noted, the kinds of probability distributions of interest will often have much of their
mass confined to relatively small regions of z space and so uniform sampling will be
very inefficient because in high-dimensional problems, only a very small proportion
of the samples will make a significant contribution to the sum. We would really like
to choose the sample points to fall in regions where p(z) is large, or ideally where
the product p(z)f(z) is large.

As in the case of rejection sampling, importance sampling is based on the use
of a proposal distribution q(z) from which it is easy to draw samples, as illustrated
in Figure 11.8. We can then express the expectation in the form of a finite sum over

Integral problem

w(s) =
p(z)

q(z)
z(s) ⇠ q(z)

p(x) =

Z
p(x|z)p(z)dz

Proposal p(x) =

Z
p(x|z)p(z)q(z)

q(z)
dz

Importance Weight p(x) =

Z
p(x|z)p(z)

q(z)
q(z)dz

Monte Carlo p(x) =
1

S

X

s

w(s)p(x|z(s))

Notation 
Always think of q(z|x) 
but often will write q(z) 
for simplicity.
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Importance Sampling to Variational Inference

Integral problem p(x) =

Z
p(x|z)p(z)dz

Proposal p(x) =

Z
p(x|z)p(z)q(z)

q(z)
dz

Importance Weight p(x) =

Z
p(x|z)p(z)

q(z)
q(z)dz

Jensen’s inequality
log

Z
p(x)g(x)dx �

Z
p(x) log g(x)dx

log p(x) �
Z

q(z) log

✓
p(x|z)p(z)

q(z)

◆
dz

Variational lower bound Eq(z)[log p(x|z)]�KL[q(z)kp(z)]

=

Z
q(z) log p(x|z)�

Z
q(z) log

q(z)

p(z)



Machines that Imagine and Reason

Penalty

42

Variational Free Energy

Interpreting the bound:

ReconstructionApprox. Posterior

• Approximate posterior distribution q(z|x):  Best match to true posterior 
p(z|x),  one of the unknown inferential quantities of interest to us.

• Reconstruction cost: The expected log-likelihood measures how well 
samples from q(z|x) are able to explain the data x.

• Penalty:  Ensures that the explanation of the data q(z|x) doesn’t deviate 
too far from your beliefs p(z). A mechanism for realising Ockham’s razor.

F(x, q) = Eq(z)[log p(x|z)]�KL[q(z)kp(z)]
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Other Families of Variational Bounds

Variational Free Energy

F(x, q) = Eq(z)[log p(x|z)]�KL[q(z)kp(z)]

Multi-sample Variational Objective

F(x, q) = Eq(z)

"
log

1

S

X

s

p(z)

q(z)
p(x|z)

#

Renyi Variational Objective

F(x, q) =
1

1� ↵
Eq(z)

2

4
 
log

1

S

X

s

p(z)

q(z)
p(x|z)

!1�↵
3

5

Other generalised families exist. Optimal solution is the same for all objectives.
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Bayesian Two-sample Testing
For some models, we only have access to an 

unnormalised probability or partial knowledge of 
the distribution.

z

f(z)

x

Interest is not in estimating the marginal probabilities, only in how they are related.

We compare the  
estimated distribution to the 

true distribution using samples.

x̂

x̃

Learning principle: Two-sample tests

p(x̂)

p(x̃)
= 1 p(x̂) = p(x̃)

Numerical Example 14

True
densities

Kernel logistic regression
with Gaussian kernels

Ratios
p(x(1))

p(x(2))

Basic idea: 
Transform density 

ratio estimation into 
class probability 

estimation
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Bayesian Two-sample Testing
{x1, . . . ,xN} = {x̂1, . . . , x̂n̂, x̃1, . . . , x̃ñ}Combine data

{y1, . . . , yN} = {+1, . . . ,+1,�1, . . . ,�1}Assign labels

p(x̂) = p(x|y = +1) p(x̃) = p(x|y = �1)Equivalence  

Density Ratio
p(x̂)

p(x̃)

Conditional
p(x̂)

p(x̃)
=

p(x|y = 1)

p(x|y = �1)

=
p(y = +1|x)p(x)

p(y = +1)

�
p(y = �1|x)p(x)

p(y = �1)Bayes’ Subst.

Class probability
p(x̂)

p(x̃)
=

p(y = +1|x)
p(y = �1|x)

x̂

x̃

p(x|y) = p(y|x)p(x)
p(y)

Bayes’ Rule

Computing a density ratio is equivalent to class probability estimation.

Numerical Example 14

True
densities

Kernel logistic regression
with Gaussian kernels

Ratios
p(y = �1|x)

p(y = +1|x)
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Testing to Adversarial Learning

Bernoulli outcome log p(y|x) = logD✓(ˆx) + log(1�D✓(˜x))

Scoring Function p(y = �1|x) = 1�D✓(x)p(y = +1|x) = D✓(x)

x

gen
x

obs

z

f(z)

x

x

gen = f�(z)

z ⇠ p(z)

Generative Adversarial Networks

Instances of testing and inference: 
• Two-sample density ratio estimation 
• Importance estimation 
• Noise-contrastive estimation 
• Adversarial learning

F(x, ✓,�) = E
p(xobs)[logD✓

(x

obs

)] + E
p(z)[log(1�D

✓

(f
�

(z)))]

F(x, ✓) = E
p(xobs)[logD✓

(x

obs

)] + E
p(xgen)[log(1�D

✓

(x

gen

))]Two-sample criterion

min

�
max

✓
F(x, ✓,�)

Alternating optimisation



Part IV

Tools for 
Algorithm Building

Tools for constructing 
scalable algorithms 

• Amortised inference 
• Stochastic optimisation
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Variational EM

Alternating optimisation for the variational 
parameters and then model parameters (VEM).

Repeat:

F(x, q) = Eq(z)[log p(x|z)]�KL[q(z)kp(z)]

E-step Var. params� / r�F(x, q)

M-step Model params✓ / r✓F(x, q)

Initialisation

…

log p(x)

KL[q||p⇤]

F(x, q)

Convergence

…

t = 1



Machines that Imagine and Reason 49

Stochastic Approximation

Repeat:

For i = 1, … N
E-step (compute q)(Inference)

M-step (Parameter Learning)

Optimise using a a stochastic gradient based on a mini-batch of data. 
Many names: online EM, stochastic approximation EM, stochastic variational inference.

N is a mini-batch: sampled 
with replacement from the full 

data set or received online.

F(x, q) = Eq(z)[log p(x|z)]�KL[q(z)kp(z)]

�n / r�Eq�(z)[log p✓(xn|zn)]�r�KL[q(zn)kp(z)]

✓ / 1

N

X

n

Eq�(z)[r✓ log p✓(xn|zn)]

Initialisation

…

log p(x)

KL[q||p⇤]

F(x, q)

Convergence

…

t = 1
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Memoryless Inference

Memoryless: Any inference 
computations are discarded 

after the M-step update

E-step does not reuse any previous computation.

Repeat:

For i = 1, … N
E-step (compute q)(Inference)

M-step (Parameter Learning)

�n / r�Eq�(z)[log p✓(xn|zn)]�r�KL[q(zn)kp(z)]

✓ / 1

N

X

n

Eq�(z)[r✓ log p✓(xn|zn)]
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Amortised Inference

Instead of solving for every 
observation, amortise using a model.

• Inference network: q is an encoder, an inverse model, 
recognition model. 

• Parameters of q are now a set of global parameters used 
for inference of all data points - test and train. 

• Amortise (spread) the cost of inference over all data. 
• Joint optimisation of variational and model parameters.

Inference networks provide an efficient mechanism for  
posterior inference with memory

Repeat:

M-step

For i = 1, … N
E-step (compute q)

�n / r�Eq�(z)[log p✓(xn|zn)]�r�KL[q(zn)kp(z)]

✓ / 1

N

X

n

Eq�(z)[r✓ log p✓(xn|zn)]

Data x

Inference 
Network

q(z |x)

z ~ q(z | x)
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Amortised Variational Inference

• Model (Decoder): likelihood p(x|z). 

• Inference (Encoder): variational distribution q(z|x) 

• Transforms an auto-encoder into a generative model

Stochastic encoder-decoder system to 
implement variational inference.

PenaltyReconstructionApprox. Posterior

Specific combination of variational inference in latent 
variable models using inference networks 

Variational Auto-encoder 

But don’t forget what your model is, and what inference you use.

F(x, q) = Eq(z)[log p(x|z)]�KL[q(z)kp(z)]

Data x

Inference 
Network

q(z |x)

z ~ q(z | x)

Model
p(x |z)

x ~ p(x | z)

z
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Minimum Description Length

Hypothesis codeData code-length

• Must introduce an approximation to the ideal message. 
• Encoder:  variational distribution q(z|x),  
• Decoder: likelihood p(x|z).

Stochastic encoder-decoder systems implement amortised variational inference.

Stochastic encoder

F(x, q) = Eq(z)[log p(x|z)]�KL[q(z)kp(z)]

Data x

Encoder
q(z |x)

z ~ q(z | x)

Decoder
p(x |z)

x ~ p(x | z)

z

Regularity in our data that can be explained with 
latent variables, implies that the data is compressible. 

Minimum Description Length (MDL): 
Inference is a problem of Compression. 

we must find the ideal shortest message of our 
data x: marginal likelihood.
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Amortised Message Passing

z
qi

p(z|D) =
Y

i

fi(z)

⇡
Y

i

qi(z) = q(z)

Factorised assumption

qi = argmin
q2Q

DKL[f
iq\ikqiq\i]

Memoryless inference: solve and update cavity distributions iteratively.

Ex
pe

ct
at

io
n 

Pr
op

ag
at

io
n 

 

Amortised inference:

qi = h({qi},D; ✓)

Use a model (trees, deep nets, basis functions).
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Amortised Predictive Distributions

p(y⇤|x⇤
, X, Y ) =

Z
p(y⇤|x⇤

,W )p(W |X,Y )dW

x

y

W3

n = 1, …, N

h1

h2 W2

W1

W {s} ⇠ p(W |X,Y )

Memoryless prediction: compute by Monte Carlo

q(y⇤|x⇤) =
1

S

SX

s=1

p(y⇤|x⇤
,W

(s))

Ba
ye

si
an

 D
ar

k 
K

no
w

le
dg

e 
 

Posterior predictive distributions in Bayesian neural networks 

p(y⇤|x⇤
, X, Y ) = f(x⇤

, ✓)

Amortised predictions:  
distillation using a deep network.
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Stochastic Optimisation
Common gradient problem

r�Eq�(z)[f✓(z)] = r
Z

q�(z)f✓(z)dz

1. Pathwise estimator: Differentiate the function f(z) 
2. Score-function estimator: Differentiate the density q(z|x)

• Don’t know this 
expectation in general. 

• Gradient is of the 
parameters of the 
distribution w.r.t. which 
the expectation is taken.

Typical problem areas: 
•Generative models and inference 
•Reinforcement learning and control 
•Operations research and inventory 
control 

•Monte Carlo simulation 
•Finance and asset pricing 

Two general approaches: 
• Deterministic methods: use additional 

bounds to simplify computation - local 
variational methods. 

• Stochastic methods: Compute the 
expectation by Monte Carlo and exploit 
properties of the distributions.
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Stochastic Gradient Estimators

Pathwise Estimator Score-function estimator

= Ep(✏)[r�f✓(g(✏,�))] = Eq(z)[f✓(z)r� log q�(z))]

Other names: 
Stochastic backpropagation 
Perturbation analysis 
Reparameterisation trick 
Affine-independent inference

Other names: 
Likelihood ratio method 
REINFORCE and policy gradients 
Automated inference 
Black-box inference

Doubly stochastic estimators

r�Eq�(z)[f✓(z)] = r
Z

q�(z)f✓(z)dz

z ⇠ q�(z)

z = g(✏,�) ✏ ⇠ p(✏)

μ

R

r✓

x = µ+Rz

z ⇠ p(z)

When easy to use transformation is 
available and differentiable function f.

When function f non-differentiable and 
q(z) is easy to sample from.



Part V

The Case of 
Variational Auto-

encoders

Data y

Encoder
q(z |y)

z ~ q(z | y)

Decoder
p(y |z)

y ~ p(y | z)

z

Explore different types of VAEs 
• Discrete and continuous latents 
• Static, sequential, volumetric. 
• Differentiable and non-

differentiable fns.
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Variational Auto-encoders in General

F(q) = Eq�(z)[log p✓(x|z)]�KL[q�(z|x)kp(z)]

Variational Auto-encoder (VAE) 
Amortised variational inference for latent variable models 

Design choices 
• Prior on the latent variable 

- Continuous, Discrete, Gaussian, 
Bernoulli, Mixture 

• Likelihood function 
- iid (static), sequential, temporal, spatial 

• Approximating posterior 
- distribution, sequential, spatial

For scalability and ease of implementation 
• Stochastic gradient descent (and variants),  
• stochastic gradient estimation 

Data x

Inference 
Network

q(z |x)

z ~ q(z | x)

Model
p(x |z)

x ~ p(x | z)

z
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Implementing a Variational Algorithm

Ideally want probabilistic programming 
using variational inference.

Variational inference turns integration 
into optimisation: Automated Tools: 

• Differentiation: Theano, Torch7, 
TensorFlow, Stan. 

• Message passing: infer.NET

• Stochastic gradient descent and 
other preconditioned optimisation. 

• Same code can run on both GPUs or 
on distributed clusters. 

• Probabilistic models are modular, 
can easily be combined.

Forward pass

Prior
p(z)

log p(z)

Model
p(x |z)

log p(x|z)

Inference
q(z |x)

H[q(z)]z

Data x

Inference
q(z |x)

Model
p(x |z)

Prior
p(z)

r✓

r�

r�

Backward pass

http://infer.net
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Latent Gaussian VAE

p(z) = N (0, I)

Model
p(x |z)

log p(x|z)

Prior
p(z)

log p(z)
Inference

q(z |x)

H[q(z)]z

Data x

q�(z|x) = N (µq
�(x),⌃

q
�(x))

All functions are deep networks.

D
ee

p 
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nt

 G
au
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n 
M
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p✓(x|z) = N (µp
✓(z),⌃

p
✓(z))

p(x|fp
✓ (z))

F(x, q) = Eq(z)[log p(x|z)]�KL[q(z)kp(z)]
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Latent Gaussian VAE

4.7. Experiments and Results

−2 −1 0 1 2 3
−2

−1

0

1

2

3
R D p(Y|θ)

0.2 - 0.4

0.01 - 0.2
< 0.01  

Fa
ct

or
 2

Factor 1

Latent Factor Embedding

Figure 4.7: Results for 2-factor bFA on the voting data using the piecewise
bound. This figure shows a plot of posterior means of factors. Each point
represents a congressman, with size of the marker proportional to the value of
the marginal likelihood; see legend for details. Republicans (R) are marked
with circles while Democrats (D) are marked with squares.

voting data with the Q20 piecewise bound. Fig. 4.7 shows posterior means
of factors. Each point represents a congressman, with size of the marker
proportional to the value of the marginal likelihood approximation; see the
legend for details on size. Republicans (R) are marked with circles while
Democrats (D) are marked with squares. We see that the factors are nicely
clustered, clearly bringing out the fact that the Republicans and Democrats
have di↵erent voting patterns. Also note that, in each cluster, there are
only few congressmen with large marginal likelihoods (the big markers).
These congressmen, perhaps the most “consistent” Republicans/Democrats,
represent the voting pattern of the whole party, and are most discriminative
in deciding the party type.

Left figure in Fig. 4.8 shows the names of the issues, while the right
figure shows the probability of two issues getting the same vote. To be

86

Latent space and 
likelihood bound  

gives a visualisation  
of importance.

3 dimensional latent variable of MNIST
Latent space  
disentangles  

the input data.

Oxygen/Swimmers Moving Left
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VAE Representations

Representation a R

a1 a2 a3

Representations are useful for strategies such as episodic control.
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Latent Gaussian VAE

Require flexible approximations for the types of posteriors we are likely to see.
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Latent Binary VAE
D

ee
p 
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Model
p(x |z)

log p(x|z)

Prior
p(z)

log p(z)
Inference

q(z |x)

H[q(z)]z

Data x

p(x|z) =
Y

i

p(xi|x<i, z)

p(x|z) =
Y

i

Bern(xi|fp
✓ (x<i, z))

q�(z) =
Y

i

Bern(zi|fq
�(z<i))

q�(z) =
Y

i

q�(zi|z<i)

p(z) =
Y

i

p(zi|z<i)

p(zi|z<i) = Bern(zi|f(z<i))
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Latent Binary VAE
Deep AutoRegressive Networks

Figure 4. Samples from a locally connected DARN paired with the nearest train-
ing example. Some of the generated frames have novel combinations of objects
and scores. Columns from left to right, along with upper bound negative log-
likelihood on the test set: Freeway (19.9), Pong (23.7), Space Invaders (113.0),
River Raid (139.4), Sea Quest (217.9).

Figure 5. Bottom: An input frame from the
game Freeway. Lower Middle: Activations in
the encoder from the first hidden layer. Upper

Middle: Activations in the encoder from the
second hidden layer. Top: Each of 25 rows is
an activation of the fully-connected third hidden
layer with 100 units.

where [r✓F denotes our estimator. A good baseline should
be correlated with f(hi), have low variance, and also be
such that the expected value of r✓ log q(hi)b is zero to
get an unbiased estimate of the gradient. We chose a non-

constant baseline. The baseline will be a first-order Taylor
approximation of f . We can get the first-order derivatives
from backpropagation. The baseline is a Taylor approxi-
mation of f about hi, evaluated at a point h0

i:

b(hi) = f(hi) +
df(hi)

dhi
(h0

i � hi) (21)

To satisfy the unbiasedness requirement, we need to solve
the following equation for h0

i:

0 =

1X

h
i

=0

q(hi)r✓ log q(hi)(f(hi) +
df(hi)

dhi
(h0

i � hi))

(22)

The solution depends on the shape of f . If f is a linear
function, any h0

i can be used. If f is a quadratic function,

the solution is h0
i =

1
2 . If fi is a cubic or higher-order func-

tion, the solution depends on the coefficients of the polyno-
mial. We will use h0

i =
1
2 and our estimator will be biased

for non-quadratic functions.

By substituting the baseline into Eq. 20 we obtain the final
form of our estimator of the gradient:

[r✓F = r✓ log q(hi)
df(hi)

dhi
(hi �

1

2

) (23)

=

r✓q(Hi = 1)

2q(hi)

df(hi)

dhi
(24)

An implementation can estimate the gradient with respect
to q(Hi = 1) by backpropagating with respect to hi and
scaling the gradient by 1

2q(h
i

) , where hi is the sampled bi-
nary value.
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The solution depends on the shape of f . If f is a linear
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layer with 100 units.

where [r✓F denotes our estimator. A good baseline should
be correlated with f(hi), have low variance, and also be
such that the expected value of r✓ log q(hi)b is zero to
get an unbiased estimate of the gradient. We chose a non-

constant baseline. The baseline will be a first-order Taylor
approximation of f . We can get the first-order derivatives
from backpropagation. The baseline is a Taylor approxi-
mation of f about hi, evaluated at a point h0

i:

b(hi) = f(hi) +
df(hi)

dhi
(h0

i � hi) (21)

To satisfy the unbiasedness requirement, we need to solve
the following equation for h0

i:

0 =

1X

h
i

=0

q(hi)r✓ log q(hi)(f(hi) +
df(hi)

dhi
(h0

i � hi))

(22)

The solution depends on the shape of f . If f is a linear
function, any h0

i can be used. If f is a quadratic function,

the solution is h0
i =

1
2 . If fi is a cubic or higher-order func-

tion, the solution depends on the coefficients of the polyno-
mial. We will use h0

i =
1
2 and our estimator will be biased

for non-quadratic functions.

By substituting the baseline into Eq. 20 we obtain the final
form of our estimator of the gradient:

[r✓F = r✓ log q(hi)
df(hi)

dhi
(hi �

1

2

) (23)

=

r✓q(Hi = 1)

2q(hi)

df(hi)

dhi
(24)

An implementation can estimate the gradient with respect
to q(Hi = 1) by backpropagating with respect to hi and
scaling the gradient by 1

2q(h
i

) , where hi is the sampled bi-
nary value.

References
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Sequential Latent Gaussian VAE
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Sequential Latent Gaussian VAE

Prior
p(z1)

State 
h(z)

Prior
p(z2)

State 
h(z)

Model
p(x |z)

log p(x|z)

Inference
q(z1⎜x)

Data x

State 
s(x)

Data x

State 
s(x)

Inference
q(z2⎜x)

• LSTM or GRU networks for state modules 
• Spatial attention in both the recognition and 

generation phase using spatial transformers. 
• Can remove inference model RNN and share 

the generate model state. 
• Can include additional canvas
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Sequential Latent Gaussian VAE
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Sequential Latent Gaussian VAE
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Volumetric VAEs
Vo

lu
m

et
ric

 D
RA

W
 

Prior
p(z1)

Prior
p(z2)

Prior
p(zT)

State 
h(z)

State 
h(z)

State 
h(z)

Model
p(x |z)

log p(x|z)

• Extend to use volumetric 
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• 3D read/write attention using 3D 
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Auxiliary Deep Generative Models

(a) (b) (c) (d)
Figure 2. (a) True posterior of the prior p(z). (b) The approximation q�(z|a)q�(a) of the ADGM. (c) Prediction on the half-moon data
set after 10 epochs with only 3 labeled data points (black) for each class. (d) PCA plot on the 1st and 2nd principal component of the
corresponding auxiliary latent space.

4.2. Semi-supervised learning on two half-moons

To exemplify the power of the ADGM for semi-
supervised learning we have generated a 2D synthetic
dataset consisting of two half-moons (top and bot-
tom), where (xtop, ytop) = (cos([0,⇡]), sin([0,⇡])) and
(xbottom, ybottom) = (1� cos([0,⇡]), 1� sin([0,⇡])� 0.5),
with added Gaussian noise. The training set contains 1e4
samples divided into batches of 100 with 3 labeled data
points in each class and the test set contains 1e4 samples.
A good semi-supervised model will be able to learn the data
manifold for each of the half-moons and use this together
with the limited labeled information to build the classifier.

The ADGM converges close to 0% classification error in 10
epochs (cf. Fig. 2c), which is much faster than an equiv-
alent model without the auxiliary variable that converges
in more than 100 epochs. When investigating the auxiliary
variable we see that it finds a discriminating internal repre-
sentation of the data manifold and thereby aids the classifier
(cf. Fig. 2d).

4.3. Generative log-likelihood performance

We evaluate the generative performance of the unsuper-
vised auxiliary model, AVAE, using the MNIST dataset.
The inference and generative models are defined as

q

�

(a, z|x) = q

�

(a1|x)q�(z1|a1, x) (19)
LY
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) .

where L denotes the number of stochastic layers.

We report the lower bound from Eq. (2) for 5000 impor-
tance weighted samples and use the same training and pa-
rameter settings as in Sønderby et al. (2016) with warm-

up2, batch normalization and 1 Monte Carlo and IW sample
for training.

 log p(x)

VAE+NF, L=1 (REZENDE AND MOHAMED, 2015) �85.10

IWAE, L=1, IW=1 (BURDA ET AL., 2015) �86.76

IWAE, L=1, IW=50 (BURDA ET AL., 2015) �84.78

IWAE, L=2, IW=1 (BURDA ET AL., 2015) �85.33

IWAE, L=2, IW=50 (BURDA ET AL., 2015) �82.90

VAE+VGP, L=2 (TRAN ET AL., 2015) �81.90

LVAE, L=5, IW=1 (SØNDERBY ET AL., 2016) �82.12

LVAE, L=5, FT, IW=10 (SØNDERBY ET AL., 2016) �81.74

AUXILIARY VAE (AVAE), L=1, IW=1 �84.59

AUXILIARY VAE (AVAE), L=2, IW=1 �82.97

Table 1. Unsupervised test log-likelihood on permutation invari-
ant MNIST for the normalizing flows VAE (VAE+NF), impor-
tance weighted auto-encoder (IWAE), variational Gaussian pro-
cess VAE (VAE+VGP) and Ladder VAE (LVAE) with FT denot-
ing the finetuning procedure from Sønderby et al. (2016), IW the
importance weighted samples during training, and L the number
of stochastic latent layers z1, .., zL.

We evaluate the negative log-likelihood for the 1 and 2 lay-
ered AVAE. We found that warm-up was crucial for activa-
tion of the auxiliary variables. Table 1 shows log-likelihood
scores for the permutation invariant MNIST dataset. The
methods are not directly comparable, except for the Lad-
der VAE (LVAE) (Sønderby et al., 2016), since the train-
ing is performed differently. However, they give a good
indication on the expressive power of the auxiliary vari-
able model. The AVAE is performing better than the VAE
with normalizing flows (Rezende and Mohamed, 2015) and
the importance weighted auto-encoder with 1 IW sample
(Burda et al., 2015). The results are also comparable to the
Ladder VAE with 5 latent layers (Sønderby et al., 2016)
and variational Gaussian process VAE (Tran et al., 2015).
As shown in Burda et al. (2015) and Sønderby et al. (2016)
increasing the IW samples and annealing the learning rate
will likely increase the log-likelihood.

2Temperature on the KL-divergence going from 0 to 1 within
the first 200 epochs of training.
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Learning principle: Model Evidence 
532 11. SAMPLING METHODS

Figure 11.8 Importance sampling addresses the prob-
lem of evaluating the expectation of a func-
tion f(z) with respect to a distribution p(z)
from which it is difficult to draw samples di-
rectly. Instead, samples {z(l)} are drawn
from a simpler distribution q(z), and the
corresponding terms in the summation are
weighted by the ratios p(z(l))/q(z(l)).

p(z) f(z)

z

q(z)

Furthermore, the exponential decrease of acceptance rate with dimensionality is a
generic feature of rejection sampling. Although rejection can be a useful technique
in one or two dimensions it is unsuited to problems of high dimensionality. It can,
however, play a role as a subroutine in more sophisticated algorithms for sampling
in high dimensional spaces.

11.1.4 Importance sampling
One of the principal reasons for wishing to sample from complicated probability

distributions is to be able to evaluate expectations of the form (11.1). The technique
of importance sampling provides a framework for approximating expectations di-
rectly but does not itself provide a mechanism for drawing samples from distribution
p(z).

The finite sum approximation to the expectation, given by (11.2), depends on
being able to draw samples from the distribution p(z). Suppose, however, that it is
impractical to sample directly from p(z) but that we can evaluate p(z) easily for any
given value of z. One simplistic strategy for evaluating expectations would be to
discretize z-space into a uniform grid and to evaluate the integrand as a sum of the
form

E[f ] ≃
L∑

l=1

p(z(l))f(z(l)). (11.18)

An obvious problem with this approach is that the number of terms in the summation
grows exponentially with the dimensionality of z. Furthermore, as we have already
noted, the kinds of probability distributions of interest will often have much of their
mass confined to relatively small regions of z space and so uniform sampling will be
very inefficient because in high-dimensional problems, only a very small proportion
of the samples will make a significant contribution to the sum. We would really like
to choose the sample points to fall in regions where p(z) is large, or ideally where
the product p(z)f(z) is large.

As in the case of rejection sampling, importance sampling is based on the use
of a proposal distribution q(z) from which it is easy to draw samples, as illustrated
in Figure 11.8. We can then express the expectation in the form of a finite sum over

p(x) =

Z
p(x, z)dz

Learning principle: Two-sample Tests
x̂

x̃ p(x̂)

p(x̃)
= 1 p(x̂) = p(x̃)
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The Future of Generative Models

In the aid of supervised and 
reward-based systems 

Calibration, confidence intervals, 
robustness and interpretability.

Data-efficient  
learning systems 

Make more efficient  
use of scarce data

Semi-parametric 
Combining parametric and non-
parametric models for scalable, 

accurate, adaptive models

Scientific discovery 
Exploratory analysis. 

Synthesis and simulation: cosmic 
phenomena, climate systems. 

Complementary systems  
and integrated agents 

Richer scene understanding 
Self-directed and curious agents  

Conceptual reasoning 
Integrated planning and  

control systems
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