
Bayesian Agents
Bayesian Reasoning and Deep Learning

in Agent-based Systems

Shakir Mohamed

Bayesian Deep Learning
NIPS 2016 @shakir_za shakir@google.com

Bayesian Agents

Bayesian Agents:
Bayesian Reasoning and Deep Learning in Agent-based Systems

Bayesian deep learning allows us to combine two needed components for
building intelligent and autonomous systems: Deep learning, which
provides a powerful framework for model building, and Bayesian
analysis, which provides tools for optimal inference in these models. The
outcome of this convergent thinking is our ability to develop and train a
broad set of tools that are important components of systems that can
reason and act in the real world. In this talk, we shall explore some of the
ways in which Bayesian deep learning can be used in the tasks we expect
from intelligent systems, such as scene understanding, concept formation,
future-thinking, planning, and acting. These approaches remain far from
perfect, and they allow us to unpack some of the challenges that remain
for even wider application of Bayesian deep learning, and Bayesian
reasoning more generally.

2

Abstract

Bayesian Agents 3

Deep Learning

+ Rich non-linear models for
classification and sequence prediction.

+ Scalable learning using stochastic
approximations and conceptually simple.

+ Easily composable with other gradient-
based methods

- Only point estimates

- Hard to score models, do
model selection and
complexity penalisation.

A framework for constructing flexible models

Bayesian Agents 4

Bayesian Reasoning

+ Unified framework for model building,
inference, prediction and decision making

+ Explicit accounting for uncertainty and
variability of outcomes

+ Robust to overfitting; tools for model
selection and composition.

- Mainly conjugate and linear
models

- Intractable inference
leading to expensive
computation or long
simulation times.

A framework for inference and decision making

Bayesian Agents 5

Bayesian Deep Learning

- Many conjugate and linear models

- Potentially intractable inference,
computationally expensive or long
simulation time.

+ Unified framework for model
building, inference, prediction and
decision making

+ Explicit accounting for uncertainty
and variability of outcomes

+ Robust to overfitting; tools for
model selection and composition.

Bayesian Reasoning

+ Rich non-linear models for
classification and sequence
prediction.

+ Scalable learning using stochastic
approximation and conceptually
simple.

+ Easily composable with other
gradient-based methods

- Only point estimates

- Hard to score models, do selection
and complexity penalisation.

Deep Learning

Natural to marry these approaches.

Bayesian Agents

Have the core tools to build reasoning systems:

1. Flexible ways of building models

2. Ability to learn and make consistent inferences and maintain beliefs

3. Reason about potential outcomes and take actions.

6

Inference and Decision-making
Two Distinct Processes:

Bayesian
Inference

What we can know
about our data

Bayesian
Reinforcement

Learning

What we can do
with our data.

Bayesian Agents

Implicit Probabilistic Models:
A more fundamental way of

building models

7

Probabilistic Models

z

x

f(z)

Prescribed Probabilistic Models:
Likelihood helps avoid

pathologies of support and lots
of different approaches.

Variational inference

z

f(z)

x

Hypothesis test-driven Learning

Bayesian Agents

Bayesian analysis thinks of probability as a belief.
We situate ourselves in this space subject to resource constraints, e.g., computation, memory.

8

A Pragmatic Bayesian Approach

Full Posterior Point Estimation

p(z|x) �(z⇤)

Bayesian Agents 9

Default Statistical Inference

PenaltyReconstruction

F(y, q) = Eq(z)[log p(y|z)]�KL[q(z)kp(z)]

Use variational inference as a default approach for statistical inference.

q�(z)

KL[q(z|y)kp(z|y)] Approximation class

True posterior

p(y|M) =

Z
p(y|z)p(z)dz

Model
p(x |z)

log p(x|z)

Prior
p(z)

log p(z)
Inference

q(z |x)

H[q(z)]z

Data x

Bayesian
Inference

Highly rich approaches for
designing the distribution q

available.

Bayesian Agents

Bayesian: Classifier ABC, ABC-MCMC. Point-estimation: GAN, GSMM
10

Hypothesis Test-driven Learning

Density Estimation
by Comparison

H0: p=q vs H1: p≠q

Density Difference
r = p� q

Density Ratio
r = p

q

f-Divergence
Class Probability

Estimation
Bregman

Divergence
Moment
matching

Bf [r
⇤kr]

f(u) = u log u� (u+ 1) log(u+ 1)

Mixtures with
identical moments

L(✓,�)

Bayesian
Inference

z

f(z)

x

Bayesian Agents 11

Bayesian Policy Search
Prior
p(z|x)

log p(z|x)

Action Prior
p(a1..T|z)

log p(a1..T|z)

Environment
or Model
p(R |a, x)

log p(R|a, x)

Action
Inference
q(a1..T|z)

z -Inference
q(z |x)

Data x

F⇡(✓) = E
q(a,z|x)[R(a|x)]� ↵KL[q

✓

(z|x)kp(z|x)] + ↵H[⇡
✓

(a|z)]
Variational MDP

Bayesian
Reinforcement

Learning

Bayesian Agents 12

Agent Reasoning

Concrete tasks of a self-reliant agent:

• Reason about physics, objects and scenes.

• Form conceptual understanding of environments.

• Engage future thinking by making predictions
about future outcomes and counterfactuals.

• Make decisions and take actions.

Bayesian Agents 13

Scene Understanding

Bayesian Agents 14

Scene Understanding
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models

(a
)D

at
a

(b
)A

IR
(c

)S
up

.
(d

)O
pt

.

Figure 10. 3D objects: The task is to infer the identity and pose
of a 3D object. (a) Images from the dataset. (b) Reconstructions
produced by re-rendering the inference made by an AIR network
trained on the data without supervision. (c) Reconstructions pro-
duced by an AIR network trained with ground-truth labels. Note
poor performance on cubes due to their symmetry. (d) Recon-
structions obtained by performing direct gradient descent on the
scene representation to minimize reconstruction error. This ap-
proach is less stable and much more susceptible to local minima.

way of imparting knowledge to the system: we specify the
generative model via a 3D renderer, i.e., we completely
specify how any scene representation is transformed to pro-
duce the pixels in an image. Therefore the task is to learn
to infer the counts, identities and poses of several objects,
given different images containing these objects and an im-
plementation of a 3D renderer from which we can draw
new samples. This formulation of computer vision is of-
ten called ‘vision as inverse graphics’ (see e.g., Grenander
1976; Loper & Black 2014; Jampani et al. 2015).

The primary challenge in this view of computer vision is
that of inference. While it is relatively easy to specify high-
quality generative models in the form of probabilistic ren-
derers, performing posterior inference is either extremely
computationally expensive or prone to getting stuck in lo-
cal minima (e.g., via optimization or Markov chain Monte
Carlo). Therefore it would be highly desirable amortize
this cost over training in the form of an inference network.
In addition, probabilistic renderers (and in particular 3D
renderers) typically are not capable of providing gradients
with respect to their inputs, and 3D scene representations
often involve discrete variables, e.g., mesh identities. We
address these challenges by using finite-differencing to ob-
tain a gradient through the renderer, using the score func-
tion estimator to get gradients with respect to discrete vari-
ables, and using an AIR inference architecture to handle
correlated posteriors and variable-length representations.

We demonstrate the capabilities of this approach by first
considering scene consisting of only one of three objects:
a red cube, a blue sphere, and a textured cylinder (see
Fig. 10a). Since the scenes only consist of single objects,

(a
)D

at
a

(b
)R

ec
on

.

Figure 11. 3D scenes: AIR can learn to recover the counts, identi-
ties and poses of multiple objects in a 3D table-top scene. (a) Im-
ages from the dataset. (b) Inference using AIR produces a scene
description which we visualize using the specified renderer. AIR
does occasionally make mistakes, e.g., image 5.

the task is only to infer the identity (cube, sphere, cylin-
der) and pose (position and rotation) of the object present
in the image. We train a single-step (N = 1) AIR infer-
ence network for this task. The network is only provided
with unlabeled images and is trained to maximize the like-
lihood of those images under the model specified by the
renderer. The quality of the scene representations produced
by the learned inference network can be visually inspected
in Fig. 10b. The network accurately and reliably infers the
identity and pose of the object present in the scene. In con-
trast, an identical network trained to predict the ground-
truth identity and pose values of the training data (in a sim-
ilar style to Kulkarni et al. 2015a) has much more difficulty
in accurately determining the cube’s orientation (Fig. 10c).
The supervised loss forces the network to predict the ex-
act angle of rotation. However this is not identifiable from
the image due to the rotational symmetries of some of the
objects, which leads to conditional probabilities that are
multi-modal and difficult to represent using standard net-
work architectures. We also compare with direct optimiza-
tion of the likelihood from scratch for every test image
(Fig. 10d), and observe that this method is slower, less sta-
ble and more susceptible to local minima. So not only does
amortization reduce the cost of inference, but it also over-
comes the pitfalls of independent gradient optimization.

We finally consider a more complex setup, where we infer
the counts, identities and positions of a variable number of
crockery items in a table-top scene (Fig. 11a and Fig. 12).
This would be of critical importance to a robot, say, which
is in the process of interacting with the objects and the ta-
ble. The goal is to learn to achieve this task with as little su-
pervision as possible, and indeed we observe that with AIR
it is possible to do so with no supervision other than a spec-
ification of the renderer. This setting can be extended to
include additional scene variables, such as the camera po-
sition, as we demonstrate in appendix H (Fig. 19). We show
reconstructions of AIR’s inferences in Fig. 11b and Fig. 12,
which are for the most part robust and accurate. We pro-
vide a quantitative comparison of AIR’s inference robust-

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models

Figure 12. 3D scenes details: Left: Ground-truth object and camera positions with inferred positions overlayed in red (note that inferred
cup is closely aligned with ground-truth, thus not clearly visible). We demonstrate fast inference of all relevant scene elements using the
AIR framework. Middle: AIR achieves significantly lower reconstruction error than a naive supervised implementation, and achieves
much higher count inference accuracy. Right: Heatmap of locations on the table in which objects are detected at each time-step (top).
The learned policy appears to be more dependent on identity (bottom).

ness and accuracy with that of a fully supervised network
in Fig. 12. We consider two scenarios: one where each ob-
ject type only appears exactly once, and one where objects
can repeat in the scene. A naive supervised setup struggles
greatly with object repetitions or when an arbitrary order-
ing of the objects is imposed by the labels, however training
is more straightforward when there are no repetitions. AIR
achieves equivalent error and competitive count accuracy
despite the added difficulty of object repetitions.

4. Related Work
Deep neural networks have had great success in learning to
predict various quantities from images, e.g., object classes
(Krizhevsky et al., 2012), camera positions (Kendall et al.,
2015) and actions (Mnih et al., 2015). These methods work
best when large labeled datasets are available for training.

At the other end of the spectrum, e.g., in ‘vision as inverse
graphics’, only a generative model is specified in advance
and prediction is treated as an inference problem, which
is then solved using MCMC or message passing at test-
time. These models range from highly specified (Milch
et al., 2005; Mansinghka et al., 2013), to partially specified
(Zhu & Mumford, 2006; Roux et al., 2011; Heess et al.,
2011; Eslami & Williams, 2014; Tang et al., 2013; 2014),
to largely unspecified (Hinton, 2002; Salakhutdinov & Hin-
ton, 2009; Eslami et al., 2012). Inference is very challeng-
ing and almost always the bottle-neck in model design.

Hinton et al. (1995); Tu & Zhu (2002); Kulkarni et al.
(2015a); Jampani et al. (2015); Wu et al. (2015) exploit
data-driven predictions to empower the ‘vision as inverse
graphics’ paradigm. For instance, in PICTURE, Kulkarni
et al. (2015a) use a deep network to distill the results of
slow MCMC, speeding up predictions at test-time.

Variational auto-encoders (Rezende et al., 2014; Kingma &
Ba, 2014) and their discrete counterparts (Mnih & Gregor,
2014) made the important contribution of showing how the
gradient computations for learning of amortized inference

and generative models could be interleaved, allowing both
to be learned simultaneously in an end-to-end fashion (see
also Schulman et al. 2015). Works like that of Hinton et al.
(2011); Kulkarni et al. (2015b) aim to learn disentangled
representations in an auto-encoding framework using spe-
cial network structures and / or careful training schemes.

It is also worth noting that attention mechanisms in neural
networks have been studied in discriminative and genera-
tive settings, e.g. by Mnih et al. (2014); Ba et al. (2015);
Jaderberg et al. (2015) and Gregor et al. (2015).

AIR draws upon, extends and links these ideas. Similar to
our work is also Huang & Murphy (2015), however they
assume a fixed number of objects. By its nature AIR is also
related to the following problems: counting (Lempitsky &
Zisserman, 2010; Zhang et al., 2015), trans-dimensionality
(Graves, 2016), sparsity (Bengio et al., 2009) and gradient
estimation through renderers (Loper & Black, 2014). It is
the combination of these elements that unlocks the full ca-
pabilities of the proposed approach.

5. Discussion
We presented several principled models that not only learn
to count, locate, classify and reconstruct the elements of a
scene, but do so in a fraction of a second at test-time. The
main ingredients are (a) building in meaning using appro-
priately structured models, (b) amortized inference that is
attentive, iterative and variable-length, and (c) end-to-end
learning. Learning is most successful when the variance
of the gradients is low and the likelihood is well suited
to the data. It will be of interest to examine the scaling
of variance with the number of objects and more sophis-
ticated likelihoods (e.g., occlusion). It is straightforward
to extend the framework to semi- or fully-supervised set-
tings. Furthermore, the framework admits a plug-and-play
approach where existing state-of-the-art detectors, classi-
fiers and renderers are used as sub-components of an AIR
inference network. We plan to investigate these lines of
research in future work.

Bayesian Agents 15

Concept Learning
O
ri
gi
na

l
O
xy
ge
n/
Sw

im
m
er
s

Sc
or
e

Sc
or
e/
Li
ve
s

M
ov

in
g

U
p

M
ov

in
g

Le
ft

Bayesian Agents 16

Concept Learning

Machines that Imagine and Reason 17

(a) (b) (c)

Figure 2: High-resolution screenshots of the Labyrinth environments. (a) Forage and Avoid showing
the apples (positive rewards) and lemons (negative rewards). (b) Double T-maze showing cues at
the turning points. (c) Top view of a Double T-maze configuration. The cues indicate the reward is
located at the top left.

state was discarded. The k-nearest-neighbour lookups used k = 50. The discount rate was set to
� = 0.99. Exploration is achieved by using an ✏-greedy policy with ✏ = 0.005. As a baseline, we
used A3C [22]. Labyrinth levels have deterministic transitions and rewards, but the initial location
and facing direction are randomised, and the environment is much richer, being 3-dimensional. For
this reason, unlike Atari, experiments on Labyrinth encounter very few exact matches in the buffers
of QEC-values; less than 0.1% in all three levels.

Each level is progressively more difficult. The first level, called Forage, requires the agent to collect
apples as quickly as possible by walking through them. Each apple provides a reward of 1. A simple
policy of turning until an apple is seen and then moving towards it suffices here. Figure 1 shows that
the episodic controller found an apple seeking policy very quickly. Eventually A3C caught up, and
final outperforms the episodic controller with a more efficient strategy for picking up apples.

The second level, called Forage and Avoid involves collecting apples, which provide a reward of 1,
while avoiding lemons which incur a reward of �1. The level is depicted in Figure 2(a). This level
requires only a slightly more complicated policy then Forage (same policy plus avoid lemons) yet
A3C took over 40 million steps to the same performance that episodic control attained in fewer than
3 million frames.

The third level, called Double-T-Maze, requires the agent to walk in a maze with four ends (a map
is shown in Figure 2(c)) one of the ends contains an apple, while the other three contain lemons.
At each intersection the agent is presented with a colour cue that indicates the direction in which
the apple is located (see Figure 2(b)): left, if red, or right, if green. If the agent walks through a
lemon it incurs a reward of �1. However, if it walks through the apple, it receives a reward of 1, is
teleported back to the starting position and the location of the apple is resampled. The duration of an
episode is limited to 1 minute in which it can reach the apple multiple times if it solves the task fast
enough. Double-T-Maze is a difficult RL problem: rewards are sparse. In fact, A3C never achieved
an expected reward above zero. Due to the sparse reward nature of the Double T-Maze level, A3C did
not update the policy strongly enough in the few instances in which a reward is encountered through
random diffusion in the state space. In contrast, the episodic controller exhibited behaviour akin to
one-shot learning on these instances, and was able to learn from the very few episodes that contain
any rewards different from zero. This allowed the episodic controller to observe between 20 and 30
million frames to learn a policy with positive expected reward, while the parametric policies never
learnt a policy with expected reward higher than zero. In this case, episodic control thrived in sparse
reward environment as it rapidly latched onto an effective strategy.

4.3 Effect of number of nearest neighbours on final score

Finally, we compared the effect of varying k (the number of nearest neighbours) on both Labyrinth
and Atari tasks using VAE features. In our experiments above, we noticed that on Atari re-visiting
the same state was common, and that random projections typically performed the same or better
than VAE features. One further interesting feature is that the learnt VAEs on Atari games do not
yield a higher score as the number of neighbours increases, except on one game, Q*bert, where
VAEs perform reasonably well (see Figure 3a). On Labyrinth levels, we observed that the VAEs
outperformed random projections and the agent rarely encountered the same state more than once.
Interestingly for this case, Figure 3b shows that increasing the number of nearest neighbours has a

7

Future Thinking

Bayesian Agents 18

Planning and Acting

Bayesian
Reasoning

Scene
Understanding

Macro-actions
and Planning

Visual Concept
Learning

World
Simulation

Evaluation | Integration | Memory | Discrete models | Continual learning

Data-efficient
Learning

Exploration

Semiparametric
Learning

Relational
learning

Hypothesis
formation

Causal
Reasoning

Thanks to many people:
Danilo Rezende, Theophane Weber, Andriy Mnih, Ali
Eslami, Karol Gregor, Sasha Veznevehts, Irina Higgins,

Balaji Lakshminarayanan, Lars Buesing, Daan Wierstra,
and many others at DeepMind.

Bayesian Agents
Bayesian Reasoning and Deep Learning

in Agent-based Systems

Shakir Mohamed

@shakir_za shakir@google.comBayesian Deep Learning
NIPS 2016

