@ DeepMind

Machine Learning
for Environmental
Grand Challenges

Shakir Mohamed

Research Scientist, DeepMind
#Al4ER Cambridge |



Principles to Products
. Assistive Advancing || Climate and Healtheare Fairness and
Applications Technology Science Energy Safety
: : : : : World Objects and
Information Uncertainty Information Gain Causality m
. Probability Bayesian Hypothe51s Estimation

Shakir Mohamed 2

Autonomous
systems




Statistical Operations

Ectimati :
Stima |c.>n Inference Fypothesis
and Learning Testing

R

Summarisation M Comparison

Modelling \ f Experimental

Enumeration

Shakir Mohamed



Statistical Operations
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On Models

Model: Description of the world, of data, | A probabilistic model writes out these
of potential scenarios, of processes. models using the language of probability

Equations of motion (ECWMF model)
Peak Bad = a::<.~(, 'l" o+ veost Jf G East-west wind
hour Weather o R 8 | = K,
e A SR R North-south wind

| Y,," . ) . : KL w _ _ )
it el T VO S lee LztEr Temperature

aq L 7798 s n9a [ _ w7 _ e .« qe
M geosit L 5. L L”":ja| ' an P, K, Hl,llﬂldlty
222} 4 v (ve22) + 202} = 0 Continuity of mass
dt\an Eand anh Ty
Poat _ J’ v.(ve 2 }an Surface pressure
It N 1T

Probabilistic models let you learn Most models in machine
probability distributions of data. learning are probabilistic.
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Model Evidence

Model evidence (or marginal likelihood, partition function):
Integrating out any global and local variables enables
model scoring, comparison, selection, moment estimation,
normalisation, posterior computation and prediction.

Learning principle: Model Evidence

'- pu/\ 0(2) /f(z) /’
| N\ |
| \ p(x) = [ p(x,2)dz

Integral is intractable in general
and requires approximation. Basic idea: Transform the

iIntegral into an expectation over a simple,

known distribution.

f(z)



Variational Methods

K Llq(zly)|p(zly)] Approximation class

True posterior

Deterministic approximation procedures with q ¢ (Z )
bounds on probabilities of interest.
Fit the variational parameters. _/\
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Learning by Comparison

Basic idea:
q(x) | p*(x) Tra.nsform Into
learning a model of

W mpare the estimated : :
€ comp the density ratio.

distribution q(x) to the true

/@ distribution p*(x) using samples.
X ¢ N
Learning principle: Two-sample tests
p*(X) ;
=1 p'(x)=qx)
q(x)

Interest is not in estimating the marginal probabilities, only in how they are related.
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Estimation by Comparison

Two steps
1. Use a hypothesis test or
comparison to obtain some
model to tells how data from
our model differs from
observed data.

2. Adjust model to better
match the data distribution
using the comparison model
from step 1.

Shakir Mohamed

Mohamed and Lakshminarayanan (2016)

Density Difference

re =D — Qo

) \\/
Max Mean Moment
Discrepency Matching

- Density Estimation
by Comparison

Hy:p" =qp vs. p* # qo
L(0,0)

Density Ra:Eio

f(w)
% o

Class Probability

Bregman |
Divergence Estimation J-Divergence
W - A 4 W, _ A

f(u) =ulogu — (u+ 1) log(u + 1)

11



J O Q .) O Q \) L \) O Q \) Q

9 C) i(?’. e Q < | '/D/'(F | O O C O O
(/ ) e ) b
/

Fully-observed auto-
regressive models

p(x)

PixelCNN and

Wavenet
Shakir Mohamed

OOQ

' Hidden Layer

Dilation =4

Hidden Layer

Dilation = 2

Hidden Layer

Dilation =1

Input

Z z~q(zlx)
Model Inference
- Network

q(z 1x)
Data x
N—

Prescribed latent variable
models and variational inference

p(x) < p(x)

Variational
Autoencoders

Algorithms for Generative Models

(Generator

Implicit latent variable models
and estimation-by-comparison

o )
%) = p(x)
Generative

Adversarial Networks
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Stochastic Optimisation

Common gradient problem

Vo 4j'qqs(Z) fo(z)] = V/dz

Typical problem areas
e Sensitivity analysis
e Generative models and inference
e Reinforcement learning and control
e Operations research and inventory control
e Monte Carlo simulation
e Finance and asset pricing

1. Pathwise estimator: Differentiate the function f(z)
2. Score-function estimator: Differentiate the
density q(z|x)

Sha kil" MOha med Mohamed et al. (2019)
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Progress in Generative Models

: ImageNet

R
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Visual Quality of Independent Samples
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Perception-Action Loops

Biological
perception-action loop

> Observation/
Sensation

Environment

Action

Primary Motor

Primary Sensory

-
- Cortex

Premotor
Cortex

Prefrbntal Posterior Assoc.
Cortex

<a4g¢- — — P>
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Action

Option

Computational
perception-action loop

External Environment

Observation/
Sensation
Environment
-t T T TT T T T T T T T T T T T T T T T T Tagem
Internal Environment
—>
Option KB
State
Embedding
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Environment Simulation

Action

Shakir Mohamed

Chiappa et al. (2017)

Action-conditional and latent-only
transitions.
Grounded representations in
actions and observations, using
simulation to support grounding.

16



00475 00475

oy
=y

s

;
0
:

-

m
m

uf
u

f
0
0
j

0
:
:

uf
!

0
¢
0
0

uf
uf
7

i
:

uf
uf

i

.
&

m.

"o

it
-
-
m.

"o

it
-

wd
&
4

ud
-
o
-~
ud



Shakir Mohamed

<
-
3

o

a

Escaping a Predator

Intrinsic Motivation

Equip agents with mechanisms to produce and learn from internal
rewards that can guide behaviour, when external rewards are absent.

£(s) = maxZ¥(a,s’|s) max

True Ml

Lp(s'|a,s)w(als)

log

-

p(s’,als)
p(s'|s)w(als)_
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ed and Rezende (2015)
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Alphalero

Generalising AlphaGo to any 2-player game

Fully general; No opening book; No
endgame database; No heuristics;
Starts from random

All learned without any reference
to past human games

Shakir Mohamed Silver et al. (2018)
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24h

Better clinical
outcomes

48h history

Applications in Healthcare

Enhance patient and Reduce
clinician experience costs
New entry

.....

Outpatient events

Admission

21



Make predictions of AKI
up to 48hr ahead.
Provide a window for
meaningful action.

For the most severe
cases, can detect up to
90% of cases.

Shakil‘ MOha med Tomasev et al. (2019)
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Critical Practice for ML

YARY

John Oliver to Stephen Colert

Consider the uses of our models.
What are the dual uses of generative models. How do we think critically
about these uses, educate, regulate, co-design these tools.

Bansal et al. (2018)
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Future of Life Institute, Value alignment map
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Neutrality Traps
The Portability Trap: Failure to understand how repurposing
algorithmic solutions designed for one social context may be
Inaccurate / do harm when applied to a different context.
The Formalism Trap: Failure to account for the full meaning of
soclal concepts such as fairness, which be resolved through
mathematical formalisms.
The Ripple Effect Trap: Failure to understand how the insertion
of technology into an existing social system changes the
behaviours and embedded values of the pre-existing system..
The Solutionism Trap: Failure to recognise the possibility that
the best solution to a problem may not involve technology.

Shakir Mohamed

Neutrality and Universality

Universality

‘A mono-cultural view of ethics
conceives itself as the only valid one.
In order to avoid this kind of ethical
chauvinism and colonialism it is
necessary that transcultural ethics
arise from an intercultural dialogue
instead of thinking of itself as
universal without noticing its own
cultural bias.” Capurro, 2004

25
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Extreme Weather Events

Segment Tropical Cyclones, Atmospheric Given CAMS5 outputs of a tropical cyclone
Rivers from background and its initial position, track its trajectory.

36
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Tools for data assimilation, analysis of NWP
simulations, and new types of decision support.

Shakir MOhamed Mudigonda et al. (2017)




Hybrid Physical Process Modelling

~ . . N o )
Predict future sea surface temperature (SST) Vftion e Model || Supervision
from previous synthetic SST data from NEMO ~
(Nucleus for European Modeling of the Ocean) - .
Physical Model: Advection-Diffusion Equation
e ! D
Warping r
Scheme [ | It-l-l
\_ J
It—k—l:t
\. J U J

2
Ly = (@) — Tepr(@)|| + e (V- 96(2))? + Amag [96(2)* + Agra [ Vi ()]

x €S

I ¢ +1 Z k T — ( ), y) It(y) Model. Average Score (MSE) Average Time

Numerical model [1] 1.99 4.8 s
. , ConvLSTM |9] 5.76 0.018 s
ye (2 Key Idea: Predict w ACNN 15 84 054 «
GAN Video Generation ([7]) 4.73 0.096 s
Proposed model with regularization 1.42 0.040 s
Proposed model without regularization 2.01 0.040 s

Shakir Mohamed De Beznac et al. (2017) 29



Solar Nowcasting

Predict solar irradiance, accounting for clouds.
» Numerical weather models become out of date with respect to the most

recent observations.
- Solar irradiance is greatly affected by clouds; operational numerical weather

models can’t resolve clouds.
« Radiative transfer codes in numerical weather models are some of the most

computationally expensive bits of numerical weather models.

estimated actual cloud opacity ensemble forecast, +00mins
201840913 04:23 UTC ) 2018-09-13 04:23 UTC S

” '

.......

Shakir Mohamed Kelly (2019), wikipedia. - ’ : I o : 30



Energy Consumption
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Data Centre Energy Usage

State Actions
© Incoming IT load Number of cooling towers &
Data centres across the world use
around 3% of the world’s electricity Q Power meters Number of chillers @
Q@ Pressure sensors Number of pumps ©
. ; & Temperature sensors :
Cooling energy is the largest non- S on, Temperature setpoints @
server load (up to 40% of total O Water flow meters Pressure setpoints &
energy usage
Jy 536l & Pump and fan speeds Flow setpoints @
@ Fault alarms Valve positions &
& Weather conditions
Over 1,200 state variables and 20 actions

" Shakir Mohamed [ & 32



Outputs

Power Usage

Pressure Temperature :
P Effectiveness

.State inputs DActions

 Current IT load - # active coolers

* Power meters * # chillers

* Pressure sensors  + Pumps on/off .\\..‘\ 27. .\\2 /,... 7‘ .\\2 ,‘._ //.
- Temp sensors - Temp setpoints P RBRRIS SSRGS

* Weather ' valve setpoints .00 @ 000 & 00.0
* Fan speeds * Pressure setpoints S o % %

OOI0O

OC

A

Inputs
State and Actions




Every five minutes: generate recommendations, send to a human operator for implementation

b

Data Center Sensors Processing

|x g

Human operator

34




40% reduction in data center cooling energy

ML Control On

o Y




System Insights

Spread the load across more equipment.
Local v. Global trade-offs.

Higher flow is not always better.
Reduced water flow to chillers in some weather conditions.

Shifting the loads.
Learned to shift cooling load to components that were
more or less efficient at different times of year.

Shakir Mohamed \‘?’\



After three quarters of operation, scaling it up and getting it into production
using a safety-first automation approach

Recommendations are sent directly to the data centre, to be verified by the local
controls system for safety before implementation.

- O -
o =

Sensors Processing

Local data center system



Safety-first for direct Al control
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Managing Energy Generation

Improving the economics of wind energy to
accelerate adoption

The cost of turbines has plummeted,
but wind is unpredictable and intermittent

The unpredictablility of renewable
energy makes it less valuable than
fossil fuel energy

One strategy: train a system for
predicting and scheduling wind energy

Shakir Mohamed \‘?‘“



Applying ML algorithms to 7ZO0MW of Google’s wind farm portfolio.

CUMULATIVE CORPORATE RENEWABLE ENERGY PURCHASING IN EUROPE, THE UNITED STATES, AND MEXICO~AS OF NOVEMBER 2016

Google*

- E—
US Department of Defense | .-

Facebook
Wal-Mart Stores -
Dow Chemical
ccur |
Ikea Group -
Kaiser Permanente l
US General Services Administration -
I

Switch SuperNAP

Mars
Apple | |
Procter & Gamble .
2CGN 500 1008 15080 2000 2509
. Solar . Wind . Biomass & waste

Source: Bloomberg New Energy Finance *Gooqgle total also includes one project in Chile for 80 MW




Inputs
Global numerical weather

forecasts
@ Local weather observations

Wind Power: Predicted Output v Ground Truth

250
200 | / {\ / & ' i
: 150 \ 1 g\ M | | \Q

I Outputs o &”
() Outp ﬂ f ! yw v

. 50
Future wind power output | /.
v

(36 hours in advance) 0
Day 2 Day 4 Day 6 Day 8 Day 10 Day 12 Day 14 Day 16

Predictions Ground truth

Elkin and Witherspoon (2019)
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Tackling Climate Change with Machine Learning

David Rolnick'", Priya L. Donti?, Lynn H. Kaack?, Kelly Kochanski®, Alexandre Lacoste®,
Kris Sankaran®7, Andrew Slavin Ross®, Nikola Milojevic-Dupont®!°?, Natasha Jaques!!,
Anna Waldman-Brown'', Alexandra Luccioni®’, Tegan Maharaj®7, Evan D. Sherwin?,

S. Karthik Mukkavilli®?, Konrad P. Kording!, Carla Gomes'?, Andrew Y, Ng'9,
Demis Hassabis'*, John C. Platt'®, Felix Creutzig”'", Jennifer Chayes'®, Yoshua Bengio®’

LUniversity of Pennsylvania, 2Carnegie Mellon University, *ETH Ziirich, 1University of Colorado Boulder,
“Element Al, "Mila, “Université de Montréal, *Harvard University,
“Mercator Research Institute on Global Commons and Climate Change, 1" Technische Universitiit Berlin,
" Massachusetts Institute of Technology, '?Cornell University, '*Stanford University,
*“DeepMind, **Google AL, **Microsoft Research

Abstract

Climate change is one of the greatest challenges facing humanity, and we, as machine learning ex-
perts, may wonder how we can help. Here we describe how machine learming can be a powerlul tool in
reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids
to disaster management, we identify high impact problems where existing gaps can be filled by machine
learning, in collaboration with other fields. Our recommendations encompass exciting research ques-

CHAPTER 4

Climate Informatics

Claire Monteleoni, Gavin A. Schmidt,
Francis Alexander, Alexandru Niculescu-Mizil,
Karsten Steinhaeuser, Michael Tippett,
Arindam Banerjee, M. Benno Blumenthal,
Auroop R. Ganguly, Jason E. Smerdon,

and Marco Tedesco



Inference

NO GOOD HEALTH QUALITY GENDER
POVERTY AND WELL-BEING EDUCATION EQUALITY

Tl

CLEAN WATER " | 8 DECENT WORK AND INDUSTRY. INNOVATION 1[] REDUCED
AND SANITATION CLEAN ENERGY ECONOMIC GROWTH ANDINFRASTRUCTURE INEQUALITIES

11 o tomontes 12 Gosuuenon

A% tuecoBaLgos B

v W' For Sustainable Development
ﬁaéﬁ K3 "

1 LIFE BELOW 1 LIFE 16 PEACE AND JUSTICE 17 PARTNERSHIPS
WATER ON LAND STRONGINSTITUTIONS FOR THE GOALS
’

Statistical Inference : | k| "i ' Aﬂ - —
L ) A CLINICALLYSAPPLICABLE APPROACH T0 THE CONTINUOUS
PREDICT!UN OF FUTURE ACUTE KIDNEY INJURY

‘ Direct | Puatished in Mature JUleies

Laplace Maximum Two Sample

approximation Likelihood Comparison
Maximum a |_ Variational ‘ Approx Bayesian Transportation
posteriori Inference Computation methods

Method of
Moments

Cavity Methods |_ Integr. Nested ‘ Max Mean I_

Laplace Approx Discrepency

Maximisation Monte Carlo

Noise
Contrastive

‘ Expectation |__| Markov chain ‘

Sequential
Monte Carlo




References

 Mohamed, S., and Balaji L.. "Learning in implicit generative models." arXiv preprint arXiv:1610.03483(2016).

« Mohamed, S., and Rezende D. J. . "Variational information maximisation for intrinsically motivated reinforcement learning.” Advances in
neural information processing systems. 2015.

 Mohamed, S., Rosca, M., Figurnov, M., & Mnih, A. (2019). Monte Carlo Gradient Estimation in Machine Learning. arXiv preprint
arXiv:1906.10652.

* Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G, ... & Petersen, S. (2015). Human-level control through deep
reinforcement learning. Nature, 518(7540), 529.

e Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A,, ... & Lillicrap, T. (2017). Mastering chess and shogi by self-play with
a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815.

* Tomasev, Nenad, et al. "A clinically applicable approach to continuous prediction of future acute kidney injury." Nature 572.7767 (2019):
116.

e Bansal, A., Ma, S., Ramanan, D., & Sheikh, Y. (2018). Recycle-gan: Unsupervised video retargeting. In Proceedings of the European
Conference on Computer Vision (ECCV) (pp. 119-135).

 Mudigonda, M., Kim, S., Mahesh, A., Kahou, S., Kashinath, K., Williams, D., ... & Prabhat, M. (2017). Segmenting and tracking extreme
climate events using neural networks. In Deep Learning for Physical Sciences (DLPS) Workshop, held with NIPS Conference.

e de Bézenac, E., Pajot, A., & Gallinari, P. Towards a Hybrid Approach to Physical Process Modeling.

o J. Kelly (2019). Open Climate Fix. https:/openclimatefix.qgithub.io/

e C. Gamble and J. Gao. Safety-first Al for autonomous data centre cooling and industrial control

e https:/deepmind.com/blog/article/safety-first-ai-autonomous-data-centre-cooling-and-industrial-control

 C. Elkin and S. Witherspoon (2019). Machine learning can boost the value of wind energy. https:/deepmind.com/blog/article/machine-
learning-can-boost-value-wind-energy



https://openclimatefix.github.io/
https://deepmind.com/blog/article/safety-first-ai-autonomous-data-centre-cooling-and-industrial-control
https://deepmind.com/blog/article/machine-learning-can-boost-value-wind-energy
https://deepmind.com/blog/article/machine-learning-can-boost-value-wind-energy

@ DeepMind

Machine Learning
for Environmental
Grand Challenges

ttttttttttttttttttttttttttt

ooooooooooooooooooo Shaklr Mohamed

Research Scientist, DeepMind
shakir z

#AI4ER Cambridge



