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Machine Learning in Healthcare
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Many areas for Machine Learning and Digital Platforms to play a role.
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‘The Triple Aim’ Health Affairs
Don Berwick
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Detecting Deterioration

* Millions of people die every year from diseases that could be prevented with earlier detection.
 Worked with a hospital partner to look at Al for predicting patient deterioration.

e Acute kidney injury (AKI), a condition where a patient’s kidney suddenly stops working
properly. Affecting up to 1in 5 hospitalised patients in UK and US.

Patient pathways

Patient A

Patwent B

Data from these processes are captured within an electronic health record.
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Characteristics DS/AIl Interactions:

e Unstructured « SWE and architects

* Noisy o Security, privacy, law
e Recorded differently e Clinical requirements
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Patient Timeline

Non-linear data
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Data and Summarisation

Data from a large hospital partner

Renal replacement
therapy

22 284 (4.0%)

1,367 (3.9%)

1,384 (3.9%)

Training Validation Calibration Test
Patients
Unique patients 562,507 35,277 35,317 70,681
Average age” 62.4 62.5 62.4 62.3
Ethnicity Black 106,299 (18.9%) 6,544 (18.6%) 6,675 (18.6%) 13,183 (18.7%)
Other 456,208 (81.1%) 28,733 (81.4%) 28,642 (81.4%) 57,498 (81.3%)
Gender Female 35,855 (6.4%) 2,300 (6.5%) 2,252 (6.4%) 4.519 (6.4%)
Male 526,652 (93.6%) 32,977 (93.5%) 33,065 (93.6%) 66,162 (93.6%)
Diabetes 56,958 (10.1%) 3,599 (10.2%) 3,702 (10.5%) 7,093 (10.0%)

2,784 (3.9%)
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Characteristics
e Sequential representation

¢ Sparse

 Missing data
e |Included and excluded
 Handling time, alignment

DS/AIl Interactions:

e Important research
questions; arise from
practical considerations.

 Where do labels come from?

 What predictions and
metrics are important to

clinicians.
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Data Summarisation

Admissions within a five year period

Summary of dataset

Data center sites
Unique admissions
- per patient

Duration (days)
ICU admissions

Medical admissions
Surgical admissions

No creatinine measured
Chronic Kidney Disease

AKI present

Average
Median
Average
Median

Any
Stage 1**
Stage 2
Stage 3A
Stage 3B
Stage 4
Stage 5
Any AKI
Stage 1
Stage 2
Stage 3

130"
2,004,217

3.6

2

9.6

3.2

214,644 (10.7%)
971,527 (48.5%)
354,008 (17.7%)
408,927 (20.4%)
746,692 (37.3%)
8,409 (0.4%)
429,990 (21.5%)
156,720 (7.8%)
77,801 (3.9%)
31,646 (1.6%)
50,535 (2.5%)
267,396 (13.3%)
207,441 (10.4%)
43,446 (2.2%)
66,734 (3.3%)

130+
124,255

3.5

2

9.6

3.2

13,161 (10.6%)
60,762 (48.9%)
21,857 (17.6%)
25 162 (20.3%)
46,677 (37.5%)
515 (0.4%)
27,162 (21.9%)
9,837 (7.9%)
4,675 (3.8%)
1,999 (1.6%)
3,004 (2.5%)
16,671 (13.4%)
12,794 (10.3%)
2,780 (2.2%)
4,267 (3.4%)

130"
125,928
3.6

2

9.6

3.2
13,411 (10.6%)
61,281 (48.7%)
22,093 (17.5%)
25 503 (20.3%)
46,622 (37.0%)
576 (0.5%)
26,927 (21.4%)
9,803 (7.8%)
4,823 (3.7%)
2,003 (1.6%)
3,066 (2.5%)
16,760 (13.3%)
12,951 (10.3%)
2,783 (2.2%)
4,162 (3.3%)

130%**
252,492

3.6

2

9.6

3.2

26,739 (10.6%)

121,675 (48.2%)

44,766 (17.7%)
51,484 (20.4%)
94,105 (37.3%)
1,103 (0.4%)
54,476 (21.6%)
19,548 (7.7%)
9,760 (3.9%)
4,098 (1.6%)
6,223 (2.5%)
33,759 (13.4%)
26,215 (10.4%)
5,575 (2.2%)
8,453 (3.3%)
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Future Prediction of AKI

48h history

24h

Shakir Mohamed

Useful predictions are those that are accurate and continuously updated,

Outpatient events Admission

given with sufficient time to act, provide context for decision

Model on 700k features. Make predictions up to 48hrs ahead.
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RNN cell

Main targets N @ : Auxillary targets
Main predictions / Auxillary predictions

Fully-connected layer

Cumulative
distribution function
layer

Sum operation

©® L I®

Loss function

Models
* Focus on strong baselines that

@ were the current state of the art.

> Deep Model
o Gradient Boosted Trees
e Logistic regression

’ e New models using Deep Learning
: « Non-linear models and
— interafuctions | |
Deep Embedding e Continuous integration of
T T information as they are received
1 T - e Calibration, uncertainty

Historical data Current step
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a) Patient creatinine measurements during admission

Patient risk of AKI within
48 hours

250 AKI occurs 48 hours after ‘AK|
= the model first generated a S
g 200 positive prediction ) \187
E . .
)
£ 150 137 147
= ®
©
v 100
~ —e— (Creatinine
50
10 b) Model predictions for any AKI within 48 hours
5\\\ (‘/‘.‘&,/-'%.‘% - = 7
08 48 hours N\ Model prediction
' Predictions above the , S /W!' 0.2 risk threshold
. . . ; % ff'f T ;
0.6 risk t!n:eshold !nc!lcate a Model predicts AKI | N\~ ﬁ% Prediction uncertainty
positive prediction of within 48 hours g 'a‘}
AKI within 48 hours _ e | \
0.4 ) e o SN *
l 4 4,
0.2 — L 11\
] - R B ———————————— —
0 2 4 6 38 10
Time since admission (days)
__c) Lab value predictions 4.50 days into admission
]
= B 45 < 5.0
3 220 2 40 4
c = S S| e
5 = 55 | Ees| |
2 _— —T | 230 e S 4.0
€ 160 — o 25 % N N -
i ® — e n—= n
© 140 20 £ 3.5
et 120 ——— Predicted maximum serum creatinine 8 ——— Predicted maximum serum urea nitrogen 8_ ——— Predicted maximum serum potassium
E —— Maximum recorded serum creatinine 5 15 —— Maximum recorded serum urea nitrogen = 3.0 —— Maximum recorded serum potassium
=3 100 % Measurement of serum creatinine at time 0 - 10 ® Measurement of serum urea nitrogen at time 0 > % Measurement of serum potassium at time 0
¢ 80 2 5 T 2.5
- 6 12 18 24 36 48 60 712 % 6 12 18 24 36 48 60 72 % 6 12 18 24 36 48 60 712

Future prediction from a fixed point (hours) Future prediction from a fixed point (hours) Future prediction from a fixed point (hours)



A Clinically-applicable Approach to the
Continuous Prediction of Future Acute Kidney

Summary:

 Make predictions of AKI up to 48hr ahead.

e Provide a window for meaningful action.

* For the most severe cases, can detect up to 20% of cases.

Further considerations and limitations: S—
e Early or late predictions and alerting fatigue

* (Generalisation needed to wider steps of hospitals, patient populations.

e Only a retrospective study.

 Need prospective studies to evaluate real clinical-use.
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Statistical Operations

Estimation i
| ! . Inference Hypothesis
and Learning Testing

R

Summarisation M Comparison

Modelling \ f Experimental

Enumeration

Shakir Mohamed #DSRD19 115



Statistical Operations

Inference Decision-making

What we can
know about our data

j Inference K

CSummarisati0n><:>< Comparison )

Data ﬁ
Enumeration

What we can
do with our data.

Shakir Mohamed

16



Centrality of Inference

Inference ArtiﬁCial Intelligence will be the
refined instantiation of these
statistical operations.

Summarlsatlon Comparlson

Data
Enumeration

The core questions of Al will be
those of probabilistic inference
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Principles to Products
. Assistive Advancing || Climate and Healtheare Fairness and
Applications Technology Science Energy Safety
: : : : : World Objects and
Information Uncertainty Information Gain Causality m
. Probability Bayesian Hypothe51s Estimation
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Neutrality Traps

 The Portability Trap: solutions designed for one social context
may be inaccurate / do harm when applied to a different context.

 The Formalism Trap: Failure to account for the full meaning of
social concepts such as fairness, and think they can be resolved
through mathematical formalisms.

 The Ripple Effect Trap: Inserting technology into an existing
social system changes the behaviours and embedded values of
the pre-existing system .

 The Solutionism Trap: Failure to recognise the possibility that
the best solution to a problem may not involve technology.
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Neutrality and Universality

Universality

‘A mono-cultural view of ethics
conceives itself as the only valid one.
In order to avoid this kind of ethical
chauvinism and colonialism it is
necessary that transcultural ethics
arise from an intercultural dialogue
instead of thinking of itself as
universal without noticing its own
cultural bias.” Capurro, 2004
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