’ Machine

Learning with
Social Purpose



OUR PLAN

ML & EARTH SYSTEMS SOCIOTECHNICAL Al g GLOBAL Al

Generative models and Research in technology and J Amore global field and
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THE MAKING

Title from Svante Arhenius’s 1908 book where the problem of global heating was first investigated. Cover: Project Gutenberg
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The Earth System is a
representation of all the
processes on our planet.

Typically we can
represent the earth
system using the physical
equations that represent
the state of the world.

Earth System Models

Atmospheric circulation & radiation

Interactive CO2

te Ty

Sea ice

Ocean Circulation hydrology

Land physics &

\\




Forecasting Timescales

s 2

NOWCASTING ~ MEDIUM- SUBSEASONAL DECADAL CLIMATE
RANGE TO SEASONAL

High-resolution Global forecasts 1-3 months 10 years 100 years

(100m-1km) (10-80km) of

predictions of atmospheric state

variables up to 2 up to 10 days head.
hours ahead.
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Munduff Hill
.

Moleheade

High Moorsley

Hameldon Hill
-

Ingham
.

= Operated by Met Eireann
* Operated by Jersey Met
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ImageNet
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UK Radar Data

Met Office RadarNet4 Data

Every 5 minutes, 288/day

1536 x 1280 pixels at 1Ikm x 1km grids
Data from 2016-2020

Focus on heavy rain that is of specific MNIST 0 j & el

interest to operational meteorologists: / ’
more rare, but where protection of life
and property is high priority.

Sample , ’
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Deep Generative Models of Rain
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Context Deep Generative Nowcast
Past 20mins Model of Rain Next 90mins

Paper: Skillful precipitation nowcasting using deep generative models of radar.

[ By W F F 7/ v
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24/06/2019 at 16:15

T+30min T+ 60min T+90min

Observations

Important (and difficult) to predict

convective cells

0 5 10 15 20 25 30

Frectp (mm) Difficult case chosen by the Chief Forecaster
who is independent of the project team.
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24/06/2019 at 16:15

T+30min T+ 60min T+90min

Observations

PySTEPS

CSI-2: 0.42 CSl-i: 033

i Cs1-2: 0.22
0 3 10 13 20 2 o C51-8: 0.05, C51-8: 0.03 oy C51-8: 0.00
Precip (mmvh) CRPS: 0.40 CRPS: 056 ~ CRPS: 055

mm——
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fro n1a| fain conveclive rain
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Why Weather Forecasts Suck
MinuteEarth @ .
5 2.79M subscribers Join @ b 12k GF 5 share L Download

https://youtu.be/snCo@Z0dt-k
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https://youtu.be/snCo0Z0dt-k
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24/06/2019 at 16:15

T+30min T+ 60min T+90min

Observations

UNet

CSI-2: 0.57
0 5 10 15 20 25 30 CSI-8: 0.13

Precip (mm/h} CRPS: 0.57

CSI-2: 0.52
CSI-8: 0.02
CRPS: 0.81

mm——
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24/06/2019 at 16:15

[ 5 10 15 20 25 30
Precip (mm/h)

mm——

Observations

Axial Attention

T+90min

T+30min T+ 60min

CSI-2: 0.54
CSI-8: 0.02
CRPS: 0.58

Csl-2: 0.58
CS1-8: 0.11
CRPS: 0.43
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24/06/2019 at 16:15

T+30min T+ 60min T+90min

Observations

DGMR

Csl-2: 0.57
[ 5 10 15 20 25 30 CSI-8: 0.14
Precip (mm/h) CRPS: 0445?

CSI-2: 0.52
CSI-8:00344 -
CRPS: 0.59 /

CSI-2: 0.49
CSI-8: 0.00
CRPS: 0.54
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US-East: 20190415 0930

Shakir Mohamed - /./ g
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Intercomparison Postage stamp plots to assess sample spread and uncertainty

T + 30min T + 60min T + 90min Generative Method

P

s ™

Observations

PySTEPS

512030
€51.8:0.03
CAP5. 0.56

UNet

csiziam
€510: 002
Chps: B

)

€81.2: 084
€51 8:0.02
CRPS 276

Gen. Method  Axial Attention

C512:052
c51n: 003
CAPS: 050

e
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Critical Success Index (CSI)

CSI allows us to measure location accuracy of the forecast at various rain rates, and is a
single summary of binary classification performance that rewards both precision and recall.

Precipitation [mm/h] >= 1.0 Precipitation [mm/h] >= 4.0 Precipitation [mm/h] >= 8.0

0.8 A -
0.6 - - -
¢ 0.4 - - -
0.2 - - -

0.0 - 1 1 1 1 - 1 1 l l - i 1 i i

20 40 60 80 20 40 60 80 20 40 60 80

Prediction interval [min] Prediction interval [min] Prediction interval [min]
PYySTEPS = == UNet Axial Attention ~ === «= Axial Attention Mode Generative Method

CSIdoesn't account for all the ways a model can make predictions

CSI = 75l v =5 1 L or can ‘cheat’ in making predictions (e.g., by blurring).

gy /) /N4
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Power Spectral Density (PSD)

PSD measures how power is distributed across a range of spatial frequencies
in each model's forecasts and to compare the spectrum with observed data.

40
30 30 30
20 20 20
:«A— . L. 10
glE 10 g 10 :L
g2 g &
o =] =]
=3 & 0 s 0
ke 0 o 2
o o o
= = 10 = 10
= - - -
g -1 g g
& & £ -20 ~
==+ Observed —20 == Observed == 1+ Observed
=20 —— Obs-8kmx8km ~—— Obs-16kmx16km ) Obs-32kmx32km
STEPS . STEPS -30 STEPS
30 — AxialAttention-Temp-Opt - AxialAttention-Temp-Opt - AxialAttention-Temp-Opt
= UNet UNet -40 UNet
—— Generative Method =40 | == Generative Method —— Generative Method
1024 512 256 128 64 32 16 8 4 1024 512 256 128 64 32 16 8 4 1024 512 256 128 64 32 16 8 4
Wavelength [km] Wavelength [km] Wavelength [km]

After 30mins, other models make predictions at a resolution on 8x8km, whereas the generative approach
maintains predictions at the resolution of the data.
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Continuous Ranked Probability Score (CRPS)

CRPS is a proper scoring rule for univariate distributions, which we use to score the

. : , e . , E[F — Obs] — LE[F — F’
per-grid-cell marginals of a model's predictive distribution against observations. | = 2El ]

Pooling Scale [km] =1 Pooling Scale [km] = 4 Pooling Scale [km] = 16
0.10 - -
0.08 - -
%) -
(a8
&
- 0.06 - -
9
o
& 0.04 - -
o
>
<
0.02 - -
0.00 - I 1 I | - I I I I - I I I I
20 40 60 80 20 40 60 80 20 40 60 80
Prediction interval [min] Prediction interval [min] Prediction interval [min]
PySTEPS UNet Axial Attention === == Axial Attention Temp. Opt. Generative Method

Also show pooled versions, which are scores on neighbourhood aggregations that show whether a prediction is
consistent across spatial scales.
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Relative Economic Value

Shows the relative economic value in the decision to take, or not to take, a
precautionary action in response to different rainfall thresholds.

Cumulative Rain = 10mm, Scale 4, T+90min Cumulative Rain = 5mm, Scale 4, T+90min Cumulative Rain = 10mm, Scale 4, T+90min
== = Generative Method - 1 samples i == = Generative Method - 1 samples wes STEPS
041 = (3enerative Method - 20 samples 06 = (enerative Method - 20 samples 0.4 1 e UNet
) ' ' m— Axial Attention
= Generative Method
0.3 1
o
2 fy
2 021 A
|
011 01—
0.0 1 0.0 1
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
Cost/Loss Ratio Cost/Loss Ratio Cost/Loss Ratio

This evaluation uses a cost-loss decision model. If we take precautions we incur a fixed cost C; if we
don't and a weather event occurs, we incur a loss L. We can compute the value which is the ratio of
expenses for the forecast versus a perfect forecast. Value is only a function of C/L.
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Expert Judgements

Most preferred 5 mm h™’ Most preferred 10 mm h™'
Worked with expert meteorologists Axial attention I 0.03 0.02
who work in the 24/7 operational : :
forecasting centre. Developed a two PySTEPS -+ 0.08 j 0.08
stage assessment to understand DGMR 0.89 = 0.90-
quality and value. 0 025 0.50 0.75 0 025 050 075
Proportion selected Proportion selected

Participant Comments

% “Ilike things to look slightly realistic even if they're not in the right place so that I can put some of my own
physics knowledge into it

» “TIwould prefer the model to underdo intensities but get a much better spatial variation”
% “This looks much higher detail compared to what we're used to at the moment. I've been really

impressed with the shapes compared with reality. I think they're probably better than what we're
currently using. The shapes in particular, some of them do look really high resolution”

rMohaniSiN A Ve 4 y 4 y 4 A N\
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Forecast Quality, Consistency & Value

Precipitation [mm/h] >= 1.0 Precipitation [mm/h] >= 4.0 Precipitation [mm/h] >= 8.0

5“.\\\ ] . + Reliability diagram

1 1 + Rank histogram
+ Fraction skill score
+ Expert assessments

0.0 - J

[10l0g;of

10 Pooling Scale [km] = 1 Pooling Scale [km] = 4 Pooling Scale [km] = 16
0.10

Power [10l0g:of
>

=1 Observed
=20 —— Obs-8kmx8km

STEPS 0.08 -
AxialAttention Temp-Opt

iNet
— Generative Method

°

o

&
'

1024 512 256 128 64 3,
Wavelenath [

Avg-Pooled CRPS

°

S

S
1

0.00 - ' Cumulative Rain = 10mm, Scale 4, T+90min Cumulative Rain = 5mm, Scale 4, T+90min Cumulative Rain = 10mm, Scale 4, T+90min

20
prel — + Generative Method - 1 samples o7 — - Generative Method - 1 samples — STEPS
04 m— Generative Method - 20 samples. 06 w— Generative Method - 20 samples 04 s UNet

== Axial Attention
—— Generative Method

Value

00

00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
CostiLoss Ratio CostjLoss Ratio CostjLoss Ratio

L W\ N\ =

Paper: Skillful precipitation nowcasting using deep generative models of radar.







Medium-Range Weather Forecasting

Task: Predict atmospheric state at 6 hour intervals for the next 10 days, at high resolution.

Alocation (or “pixel”) in this grid is a column that
contains:

* 5surface variables (incl. 2m temperature, 10m
winds, precipitation, sea-level pressure)

|
=1
i e s S

* 6 atmospheric variables each at 37 vertical
pressure levels (incl. geopotential, temperature,
wind, humidity)

e

- 227 variables per grid point and a total of
235,000 targets at any point.
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ECMWEF Forecast Data
Atmospheric reanalysis combines past weather

ECMWEF produce several data sets. Two we use: observations from a range of sources with

* HRES: A deterministic forecast called HRES, model information to provide a complete and
and an ensemble forecast called ENS.

* ERA 5: A reanalysis dataset called ERAS from
1979-present at 0.25deg resolution.

consistent record of meteorological conditions.

< 305 -
@ L . -
‘é‘ 295 - .
Global Observing System ECMWF model g 2901, ft\ 7 g A
£ 285/ \Qj/
‘\‘~\, ,/',.,' =J \ it . igs = 280 [* Y
\ / / V E 275 L 1 1 1 1 1 1 1 Il
")’ CB H Q/ — 25June 26June 27June 28June 29June 30June
AN 00 UTC
S /,.—w’/\ Data @
MMI\_' Assimilation g 320
g
| g sisp /\\ /‘\ f"\\
S 310+ ‘ (‘
[}
g 305 rv
L 300}
E 295
25June 26June 27June 28June 29June 30June
00 UTC

—— ERAS ERAS uncertainty estimate
—— Operational analyses
e Observations

www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production




Performance Scorecard

Scorecards summarise differences in performance between models across multiple attributes.

Geopotential East-west wind Specific humidity
50 -  ——— -— == ——
n
[
3 500 -
-
1000 -
Temperature North-south wind Surface temperature
50 - B [
i Surface east-west wind
500 - Surface north-south wind
1000 - Mean sea-level pressure

1 2 3 4 7 8 9 10 1 2 3 4 7 8 9 10 4 o 3 g4 7 8 9 10

5 6 5 6 5 6
Lead time (days) Lead time (days) Lead time (days)
Blue: GraphCast better, Red: HRES better

GraphCast is betfter on 90% of 2760 targets.

Paper: GraphCast: Learning skillful medium-range global weather forecasting
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GraphCast [10u]: 2018-01-29_00:00 (0 hours)

Machine Learning
Weather Predictions

RMSE: Geopotential at 500 RMSE:
8004| & .
3 =
600 | 2 w
2 4004v S 2 =
1 E-
200 — HRES S
——— GraphCast .
e e
12345678910 12345678910
Lead time (days) Lead time (days)
RMSE (relative): RMSE (relative): 2m
0.1
0.0 %OA
@
=01 S 0.2
o
-0.2 :
Eoo
03 = ‘\W/
12345678910 123456780910
Lead time (days) Lead time (days)

ML predictions we can outperform operational forecasts.

Paper: GraphCast: Learning skillful medium-range global weather forecasting
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* Better precipitation forecasts, which is a key priority since
most models are weak here.

* Seasonal and decadal forecasting, which have been so poor
historically that there are few applications.

« Downscaling that allows higher-resolution processes to be
represented from lower resolution simulation.

* Medium-range forecasting in renewables and net-zero.

* Causal methods for detection and attribution of significant
events.

 Addressing biases in climate models, improving
uncertainty, data sharing and distributed computation
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EHEILA JASANOFE B OBANG-HVUS KIM

DREAMSCAPES
OF MODERNITY

(if @ AV

Title from Sheila Jasanoff and Sang-Hyun Kim's 2015 book that helps develop a sophisticated understanding of research and the politics of science and technology. Cover: Univ. Chicago Press
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EL NINO CLIMATE IMPACTS

December-February

Ay

Integrating Climate Forecasts and Societal
Decision Making: Challenges to an Emergent
Boundary Organization

Shardul Agrawala, Kenneth Broad and David H. Guston

Saisnce, Technology, & Human Valuss
Vol. 28, No. 4, Special Issue: Boundsry Organizations in Ervironmental Policy and Science (Autumn,
2001), po. 454-477 (24 peges)

The Use of Seasonal Climate Forecasting in
Policymaking: Lessons from Northeast Brazil

Maria Carmen Lemos, Timothy J. Finan, Roger W. Fox, Donald R. Nelson & Joanna Tucker

Climatic Change 56, 479-507 (2002) | Cite this article

Published: September 2002

Effective and Equitable Dissemination of Seasonal-to-
Interannual Climate Forecasts: Policy Implications from
the Peruvian Fishery during El Nifio 1997-98

Kenneth Broad, Alexander S. P. Pfaff & Michael H. Glantz
Climatic Change 54, 415-438 (2002) | Cite this article

O

rom: NOAA Blcoot Mwet [coolanddry M cool and Wet
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Ask our technical and
engineering work to
account for a wider and
more expansive set of
considerations

5

Asks us to adjust the conceptual apertures we use in our work

Bringing focus and
manageability to the
seeming vastness of
social considerations




A Sociotechnical Stack

| Community & Cooperation |

{Governance & Accountability|

Deployment &
Commercialisation




Privacy
- and
| consent

Ethics Principles

a8 .
I | - F . -
29 l?rotected ﬂ-DlVeI‘S'ltYS | Community &
5 S disclosuresj] _equity capacity building
g
£ 8 | Co-design f| SDGs : —
oY p— —
JU Citizensj| Citizen §;
O _— Jury {isciencef|
E $ 5 : -
n — £ .
— | S o
2 0
O 3 < - , ——
9 — | | Watermarking & [ i Llcence$
c / D I T e
- & 2 m—— —
8 £ 3 | Oversight | = Interoperability
N — N - . o
= 2 i i e — B
. 353 | Audits | |, Red Bug |, Research
(@) o £ teams} | poun Ethics
o= £ ty § | ;
) 3 ‘ committees
o — , ,
m ‘

ir Moha‘ned






PARTICIPATION

The ways that broader communities of people,
especially of those most vulnerable, are involved in
technology design

Participation means including people in the design
of our methods, and being open to changing what
we work and how we work, based on their input.

Paper: Power to the People? Opportunities and Challenges for Participatory AI.
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* Establishing more participatory and community-centred
work to showcase and enable their effective use

* More work on human-AlI interactions and evaluations.

 More historical and decolonial work that continues to
provide public memory for the need for a high degree of
rigour.

- New instantiations of social safety and care that are tied to
broad-scope impact assessments and release strategies.

* Evolving practices for documentation, standards and
testing, verification and monitoring, data rights and
sovereignty, and social and democratic influence.
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THE HUMAN S

HUMAN
CONDITION SoNRS

-

Title from Hannah Arendt’s 1958 book that is a critical view of science; and concerned with the vital role of our action in the societies we live in. Cover: Univ. Chicago Press
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Testing Problem

Check whether the mean of an unknown distribution P is equal to a known constant ¢

d x; ~ p(x)
n data points T1,...,Ln €ER

d
Mean condition ceR

3 ~1
Empirical distribution P () = Z n" =,
i

mn
Weighted distribution Py (z) = Z Til[p, =a]

1=

1
Likelihood JJES Y mi=1,m2>0
i 3

min D[P P.| s.t. Tix; = C
Objective {m| >, mi=1,m;>0} [ n“ ] Z e

Paper:Understanding Deep Generative Models with Generalized Empirical Likelihoods
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Generalised Empirical Likelihood (GEL)

General moment condition Ex~p,[m(X;c)] =0

Generalised Empirical min D[anPw] s.t. Exop. [m(X;c)] =0
Likelihood (GEL) {m|>2; mi=1,m:20}

1 o, Histogram of Probabilities
EEl BigGAN-deep

BiAN Sam

ples Least Like Data 0.30,_Histogram of Probabilities
/ e, :

I CDM

~_CDM Samples Least Like Data

o.zzl

< 0. = 0.2

= 0.04

= 0.1

g 002 .

— 1.0 = 0.30

§ Il Data 0.25 Il Data
O o

0.04' T
0.02

0 5 10 15 20
n; * Number of Examples

0.20]

0.1
1 [v—
0 2 4

m; * Number of Examples

“".: *F‘ ™ Eh‘m- 2
Data Least Like CDM

Data Least Like BigGAN

Use to identify examples not represented by the model

Paper:Understanding Deep Generative Models with Generalized Empirical Likelihoods
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Medical and other data represent people

Patient Timeline

Encounters } 5 Rlllllllllll

. . s ) 4 N \
Primary Care Visit Urgent Care Visit ) | Hospitalization

. ——o—o

Hemoglobin A1C: 9.0% 5= - :

(f‘.rpahm-m - n'gml/l Glusiose 170 mord,)
Medications k
/|HC.LJ|IF Glargine 10 units rwgwtly) Ve

\VunccmycmLng

Labs

Vital Signs

.
(  Non-invasive blood pressure 90/65 n‘van)

Bone UlOp:y/I

Procedures

Notes

(:Fyear old man with difficult-toscontrol dwabetes)

Diagnoses
‘/ Type Il Diabetes ) Skin and Soft Tissue Infection
\ J

{ Acute Kidney Injury )

= J

Time g

Knowing legal gender or self-identified race or age becomes the basis of fairness analyses.

Paper: Fairness for Unobserved Characteristics: Insight from Impacts on Queer Communities

[ By W F F 7/ v
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Diverse groups of researchers have the capacity to both use

their life experiences in combination with technical expertise
to explore solutions for questions like that of unobserved
characteristics, and to encourage others to work on them.




Queer Fairness

Assessing fairness for unobserved characteristics

REUSABLE
METHODOLOGY

Several Areas of
Vulnerability

Find ways for different types of
communities, those who are marginalised,
and those who are most vulnerable, to
become part of addressing the problem.

Privacy; Censorship; Inclusive language;
Fighting Online abuse; Health; Mental

Health; Employment

Paper: Fairness for Unobserved Characteristics: Insight from Impacts on Queer Communities
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Al for Everyone?

g
POLITICAL
COMMUNITY

INTERCULTURAL
ETHICS

Power in strengthening varied
forms of political community,
who can create new forms on
understanding and elevate
intercultural dialogue.

How technology can support
society and culture, rather
than becoming an instrument
of cultural oppression and
colonialism.

Paper: Decolonial Theory as Sociotechnical Foresight

in Al
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Title from Svante Arehenius’s 1908 book where the problem of global heating was first investigated. Cover image: Project Gutenberg



GLOBAL
Al

Support for grassroots
transformation and wider
ownership of Al is working.
Keep doing more.

An expanded view of what is Develop a view of the
within our responsibilities sociotechnical stack,
that infuses our work with intervene where you best can,
social purpose. and support richer

participation in AL

YOUR SOCIAL RECLAIM YOUR .
PURPOSE AGENCY /
=




ey 4 Yy
Some Resources

Skilful precipitation nowcasting using deep generative
models of radar

Lenc, Matthew Willso

ATMOSPHERIC
SCIENCE

stre 697, 672-677 (2021 .

GraphCast: Learning skillful medium-range
global weather forecasting

Remid Lam "', Alvaro Sanchez-Gonzales” !, Matthew Willson ™!, Peter Wirnsherger !, Meire Fortenam !,
Alexander Pritzel” ', Suman Ravari’, Timo Ewalds’, Ferran Alet’, Zach Eston-Rosen', Weibua Hu',
Alexander Merose”, Stephan Hoyer’, George Holland', Jackiynn Stoet', Ordol Viayals', Shabir Mohamed'

and Peter Bactaghia’

“equal contrbuicn, | DecpMind, *Google

Resecarch & Publications i V\

Al Labor, and the Economy

Guidelines for Al and Shared
Prosperity

We introduce a machine-learning (ML)-based weather simulator—called “GraphCast”—which outper-
forms the most accurate ! i ge weather system in the

Philosophy & Technology
htps://doiorg/10.1007/513347-020-00405-8

Explore PAI’s Guidelines for Al BESEARCH ANTIGLE

and Shared Prosperity: tools to
design and deploy Al systems
in service of workers’ rights
and well-being,.

Decolonial Al: Decolonial Theory as Sociotechnical Check for
Foresight in Artificial Intelligence Updatos

Shakir Mohamed' 7 - Marie-Therese Png? - William Isaac’

EQUITY

FOR

WOMEN
SCIENCE

Power to the People? Opportunities and Challenges for
Participatory Al

Abeba Birhane William Isaac Vinodkumar Prabhakaran
Asecilla Fosealulion & University Decphind Guagee
Cellige Duliin UK UsA

abelsw hirlaneieniased i

Mark Diaz Madeleine Clare Elish Tasan Gabriel
Geogh Googhe De 4
v UsA
DISMANTLING SYSTEMIC BARRIERS markdiarit googie coen meclishitgoogh oo smonindeepmind com
TO ADVANCEMENT Shakir Mohamed
DeepMind
UK

CASSIDY R. SUGIMOTO - VINCENT LARIVIERE akirisdeepmind e
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